首页> 外文学位 >Porous materials as high performance adsorbents for CO2 capture, gas separation and purification.
【24h】

Porous materials as high performance adsorbents for CO2 capture, gas separation and purification.

机译:多孔材料用作二氧化碳捕获,气体分离和纯化的高性能吸附剂。

获取原文
获取原文并翻译 | 示例

摘要

Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation.;In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties.;In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity.;In chapter 3, a new series of oxygen-doped ACs were synthesized from polyfuran. Different factors that affect the AC formation were investigated, and two kinds of porogens (ZnC12 and KOH) and two active temperatures (600 and 800 °C) were tested. At 298K and 1bar, an excellent selectivity for separating CO2/N2 (41.7) and CO2/CH 4(6.8) gas mixture pairs was obtained on the PF-600 KOH. A breakthrough simulation was also performed to demonstrate the potential of industrial applications. The PF-600 KOH sample showed the best separation result in the simulated adsorption breakthrough as well.;In chapter 4, quinone and hydroquinone on the surface of PF-600 ZnC1 2 were integrated. Significantly pore size shrinkage, improved CO 2/N2 and CO2/CH4 IAST selectivity were observed, which is 58.7% and 28.4 % higher than pristine porous carbon at 298K and 1 atm, respectively. In addition, transient breakthrough simulations for CO2/CH4/N2 binary mixtures were conducted in order to demonstrate the good separation performance in fixed bed adsorbers.;In chapter 5, a novel nitrogen doped polymer poly(2-phenyl-1,3,6,8tetraazacyclodecane) will be used as the precursor to produce microporous N-doped activated carbons. Three activation temperatures (600, 700, and 800 °C) has been investigated with KOH as the porogen. High nitrogen content has been remained in the resultant carbon materials. Improved CO2 adsorption capacity and selectivites for the separation of CO2/CH4/N2 binary gas mixtures were achieved by the carbon adsorbents due to their N-containing groups, narrow pore size distribution, and large specific surface area.;In chapter 6, MOF-derived activated carbons are developed from MIL-100(Al) as hard-template. Direct carbonization of MIL-100, MIL-100(Al)/F-127 composite, and MIL-100(Al)/KOH mixture has been investigated. Pore structure and surface morphology have been demonstrated. CO2/CH4/N2 binary selectivity, adsorption heats, and kinetic selectivity have been calculated. Breakthrough simulation has been conducted to mimic industrial application. We found that resultant carbons showed better CO2 capture ability and selectivity than parental MIL-100(Al).
机译:温室气体排放导致的全球变暖受到广泛关注。在温室气体中,由于排放量巨大,二氧化碳对全球变暖的贡献超过60%。烟道气含有约15%的CO2,其余为N2。如果可以从烟气中分离出CO2,则其好处不仅可以降低全球变暖的影响,还可以生产纯CO2作为非常有用的工业原料。迫切需要在工业过程中取得重大进展。此外,由于化石燃料的寿命短,能源危机是所有国家面临的最大挑战之一,按照今天的速度,石油将用尽50年,煤炭将用尽150年。此外,燃烧化石燃料对环境造成的严重污染要求我们探索可持续,环保和便捷的能源。在几种替代能源中,天然气因其巨大的生产率,丰富的原料和易于生产而成为最有前途的替代能源之一;为了在工业上实现实质性的吸附过程,需要合成新的吸附剂或进行改性现有吸附剂的性能改善已成为最关键的问题。本论文报道了五种具有先进吸附性能的新型吸附剂的系统表征和开发。第二章,以非致癌氯甲基甲基醚(CME)为交联剂成功合成了氮掺杂超交联聚合物(HCPs)。一步内完成链接剂。已经提出并证明了织构性质,表面形态,CO2 / N2选择性和吸附热。还对影响CO2吸附和CO2 / N 2分离的因素进行了全面讨论。结果表明,高孔隙率和高氮含量可以有效提高CO 2的吸收和CO 2 / N 2的分离选择性。第三章,由聚呋喃合成了一系列新的氧掺杂AC。研究了影响AC形成的不同因素,并测试了两种成孔剂(ZnC12和KOH)和两个活性温度(600和800°C)。在298K和1bar下,在PF-600 KOH上获得了出色的分离CO2 / N2(41.7)和CO2 / CH 4(6.8)气体混合物对的选择性。还进行了突破性的仿真,以证明工业应用的潜力。 PF-600 KOH样品在模拟的吸附突破中也表现出最好的分离效果。第四章,对PF-600 ZnC1 2表面的醌和对苯二酚进行了积分。观察到显着的孔径收缩,改善的CO 2 / N2和CO2 / CH4 IAST选择性,分别比原始多孔碳在298K和1 atm时分别高58.7%和28.4%。此外,对CO2 / CH4 / N2二元混合物进行了瞬态突破模拟,以证明其在固定床吸附器中的良好分离性能。;在第5章中,一种新型的氮掺杂聚合物聚(2-苯基-1,3,6) (8,四氮杂环癸烷)将用作生产微孔氮掺杂活性炭的前体。使用KOH作为致孔剂,研究了三种活化温度(600、700和800°C)。所得碳材料中保留了高氮含量。由于碳吸附剂的含氮基团,窄的孔径分布和大的比表面积,它们提高了CO2吸附能力,并提高了分离CO2 / CH4 / N2二元气体混合物的选择性。在第六章中,MOF-衍生的活性炭由MIL-100(Al)作为硬模板开发而成。已经研究了MIL-100,MIL-100(Al)/ F-127复合材料和MIL-100(Al)/ KOH混合物的直接碳化。孔结构和表面形态已得到证明。已经计算出CO2 / CH4 / N2的二元选择性,吸附热和动力学选择性。已经进行了突破性仿真来模仿工业应用。我们发现,与亲代MIL-100(Al)相比,所得碳显示出更好的CO2捕获能力和选择性。

著录项

  • 作者

    Wang, Jun.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Chemical engineering.;Petroleum engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 316 p.
  • 总页数 316
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号