首页> 外文学位 >Hexagonal boron nitride: Ubiquitous layered dielectric for two-dimensional electronics.
【24h】

Hexagonal boron nitride: Ubiquitous layered dielectric for two-dimensional electronics.

机译:六方氮化硼:用于二维电子设备的无处不在的分层电介质。

获取原文
获取原文并翻译 | 示例

摘要

Hexagonal boron nitride (h-BN), a layer-structured dielectric with very similar crystalline lattice to that of graphene, has been studied as a ubiquitous dielectric for two-dimensional electronics. While 2D materials may lead to future platform for electronics, traditional thin-film dielectrics (e.g., various oxides) make highly invasive interface with graphene. Multiple key roles of h-BN in graphene electronics are explored in this thesis. 2D graphene/h-BN heterostructures are designed and implemented in diverse configurations in which h-BN is evaluated as a supporting substrate, a gate dielectric, a passivation layer, or an interposing barrier in "3D graphene" superlattice. First, CVD-grown graphene on h-BN substrate shows improved conductivity and resilience to thermally induced breakdown, as compared with graphene on SiO2, potentially useful for high-speed graphene devices and on-chip interconnects. h-BN is also explored as a gate dielectric for graphene field-effect transistor with 2D heterostructure design. The dielectric strength and tunneling behavior of h-BN are investigated, confirming its robust nature. Next, h-BN is studied as a passivation layer for graphene electronics. In addition to significant improvement in current density and breakdown threshold, fully encapsulated graphene exhibits minimal environmental sensitivity, a key benefit to 2D materials which have only surfaces. Lastly, reduction in interlayer carrier scattering is observed in a double-layered graphene setup with ultrathin h-BN multilayer as an interposing layer. The DFT simulation and Raman spectral analysis indicate reduction in interlayer scattering. The decoupling of the two graphene monolayers is further confirmed by electrical characterization, as compared with other referencing mono- and multilayer configurations. The heterostructure serves as the building element in "3D graphene", a versatile platform for future electronics.
机译:六方氮化硼(h-BN)是一种层状结构的电介质,具有与石墨烯非常相似的晶格,已被研究为二维电子学中普遍存在的电介质。尽管2D材料可能会成为未来电子产品的平台,但传统的薄膜电介质(例如各种氧化物)会与石墨烯形成高度侵入性的界面。本文探讨了h-BN在石墨烯电子学中的多个关键作用。 2D石墨烯/ h-BN异质结构以多种配置设计和实现,其中h-BN被评估为“ 3D石墨烯”超晶格中的支撑衬底,栅极电介质,钝化层或插入势垒。首先,与SiO2上的石墨烯相比,h-BN衬底上的CVD生长的石墨烯显示出更高的导电性和对热诱导击穿的回弹力,这对于高速石墨烯器件和片上互连很有用。 h-BN还被用作具有2D异质结构设计的石墨烯场效应晶体管的栅极电介质。对h-BN的介电强度和隧穿行为进行了研究,证实了其坚固性。接下来,研究了h-BN作为石墨烯电子器件的钝化层。除了电流密度和击穿阈值得到显着改善外,完全封装的石墨烯还表现出最小的环境敏感性,这是仅具有表面的2D材料的主要优势。最后,在以超薄h-BN多层作为插入层的双层石墨烯装置中,观察到层间载流子散射的减少。 DFT模拟和拉曼光谱分析表明减少了层间散射。与其他参考的单层和多层构型相比,两个石墨烯单层的去耦进一步通过电学特征得以证实。异质结构充当“ 3D石墨烯”的构建元素,“ 3D石墨烯”是未来电子产品的通用平台。

著录项

  • 作者

    Jain, Nikhil.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Nanotechnology.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号