首页> 外文学位 >Time-Resolved Magnetic Microscopy Using Nearand Far-Field Picosecond Heating
【24h】

Time-Resolved Magnetic Microscopy Using Nearand Far-Field Picosecond Heating

机译:使用近场和皮秒皮秒加热的时间分辨电磁显微镜

获取原文
获取原文并翻译 | 示例

摘要

Advanced magnetic microscopies are key to advancing our understanding and application of novel magnetic phenomenon such as skyrmions, spinwaves, and domain walls. However, due to the diffraction-limit of light, achieving the 10 . 100 nanometer spatial resolution and 10 . 100 picosecond temporal resolution required to image these phenomena is beyond the reach of tabletop techniques. My dissertation research has been to develop stroboscopic magnetic microscopy techniques that use picosecond thermal gradients to transduce magnetization into a voltage. In magnetic metals, this is accomplished via the anomalous Nernst effect and in ferromagnetic insulator/heavy metal bilayers the signal is due to the longitudinal spin Seebeck effect detected via the inverse spin Hall effect. Using focused, 3 ps laser pulses to heat cobalt and permalloy films, I demonstrate that the anomalous Nernst effect can image magnetization with 10-100 ps temporal resolution, sub-micron spatial resolution, and sensitivity to the in-plane moment of 0.1‹/aHz. I then show how this sensitivity and resolution can be applied for phase-sensitive ferromagnetic resonance imaging in ultrathin YIG/Pt bilayers in which we observe spatial variation of the resonance field, amplitude, phase, and linewidth. To conclude, I present the development of a near-field scanning optical microscope to create nanoscale thermal gradients and achieve spatial resolution of magnetic textures below the diffraction limit. The advent of these far- and near-field magneto-thermal imaging techniques will enable the table-top measurement of nanoscale magnetization dynamics in thin film devices.
机译:先进的磁性显微技术是增进我们对新型磁性现象(如天体离子,自旋波和畴壁)的理解和应用的关键。但是,由于光的衍射极限,所以达到了10。 100纳米的空间分辨率和10。成像这些现象所需的100皮秒时间分辨率超出了桌面技术的范围。我的论文研究是开发频闪磁显微镜技术,该技术使用皮秒热梯度将磁化强度转换为电压。在磁性金属中,这是通过异常能斯特效应实现的;在铁磁绝缘体/重金属双层中,信号归因于通过自旋霍尔效应检测到的纵向自旋塞贝克效应。使用聚焦的3 ps激光脉冲加热钴和坡莫合金膜,我证明了异常的能斯特效应能以10-100 ps的时间分辨率,亚微米空间分辨率以及对0.1的面内矩敏感度成像磁化强度/ aHz。然后,我将展示如何将此灵敏度和分辨率应用于超薄YIG / Pt双层中的相敏铁磁共振成像,在其中我们观察到共振场,振幅,相位和线宽的空间变化。总而言之,我介绍了近场扫描光学显微镜的发展,以创建纳米级的热梯度并实现低于衍射极限的磁性结构的空间分辨率。这些远场和近场磁热成像技术的出现将使得能够对薄膜器件中的纳米级磁化动力学进行桌面测量。

著录项

  • 作者

    Bartell, Jason.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Applied physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号