首页> 外文学位 >X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing.
【24h】

X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing.

机译:使用同步辐射的X射线荧光光谱法及其在无人机环境传感中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis I present an analytical optimization of the Synchrotron Radiation X-Ray Fluorescence (SR-XRF) technique for applications in unmanned aircraft aerosol studies. In environmental and atmospheric science, there is a pressing need for aerosol measurements at various altitudes in the atmosphere and spanning large regions. This need is currently either ignored, or met to a limited degree by studies that employ manned aircraft. There is, however, a great deal of opportunity to improve and expand on these studies using the emerging technology of unmanned aircraft systems. A newly developed aerosol sampler makes this opportunity a near-reality by its ability to collect aerosol samples in-situ from unmanned aircraft platforms. The challenge lies in analyzing these samples for elemental composition. In airborne aerosol studies, the ability to resolve where a sample was collected both spatially and temporally is limited by the sensitivity of the analysis technique. In aircraft-based aerosol collection, the length of the aerosol sample spot corresponds to distance. Thus the spatial resolution of an airborne study is limited by the amount of mass that must be collected for analysis. The SR-XRF optimizations outlined in this thesis decrease the amount of sample mass required for detectable elemental concentrations, allowing aerosol samples to be analyzed in smaller areas corresponding to smaller time steps. Since, in a flight path, time steps are directly correlated with distance, analysis of smaller time steps results in the ability to measure aerosols at higher spatial resolution. Four SR-XRF analysis configurations were experimentally tested: monochromatic beam, white beam, filtered white beam, and filtered white beam-filtered detector to determine which configuration gave the highest elemental sensitivity and selectivity. Of these tested methods, the straight polychromatic white beam configuration resulted in the best sensitivity for elements across a large range of x-ray energies for small amounts of mass collected on thin film substrates. The research in this thesis provides researchers with an optimized method for non-destructively analyzing a wide variety of environmental samples with high elemental sensitivity and selectivity. This research also has important implications for the ability to perform in-situ aerosol studies with unmanned aircraft on a systematic basis.
机译:在本文中,我将对同步辐射X射线荧光(SR-XRF)技术进行分析优化,以用于无人飞机烟雾研究。在环境和大气科学中,迫切需要在大气中不同高度并跨越较大区域进行气溶胶测量。当前的需求或者被有人驾驶飞机的研究所忽略,或者在一定程度上得到满足。但是,利用新兴的无人飞机系统技术,有很多机会可以改进和扩展这些研究。新开发的气溶胶采样器通过从无人飞机平台现场采集气溶胶样品的能力,使这一机会几乎成为现实。挑战在于分析这些样品的元素组成。在空气悬浮气溶胶研究中,解析技术在空间和时间上在何处采集的能力受限于分析技术的敏感性。在基于飞机的气溶胶收集中,气溶胶样本点的长度与距离相对应。因此,机载研究的空间分辨率受到必须收集进行分析的质量的限制。本文概述的SR-XRF优化技术减少了可检测元素浓度所需的样品质量,从而允许在较小的区域内分析与更短的时间步长对应的气溶胶样品。由于在飞行路径中,时间步长与距离直接相关,因此对较小时间步长的分析可以在更高的空间分辨率下测量气溶胶。实验测试了四种SR-XRF分析配置:单色光束,白光束,滤波后的白光束和滤波后的白光束滤波检测器,以确定哪种配置可提供最高的元素灵敏度和选择性。在这些测试方法中,对于在薄膜基板上收集到的少量物质,大范围的X射线能量中的直线多色白光束配置可为跨大范围X射线能量的元素提供最佳灵敏度。本文的研究为研究人员提供了一种优化的方法,用于以高元素灵敏度和选择性对各种环境样品进行非破坏性分析。这项研究对于系统地对无人飞机进行原位气溶胶研究也具有重要意义。

著录项

  • 作者单位

    University of Alaska Fairbanks.;

  • 授予单位 University of Alaska Fairbanks.;
  • 学科 Analytical chemistry.;Environmental science.;Remote sensing.
  • 学位 M.S.
  • 年度 2015
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号