首页> 外文学位 >Attaining Landfill Sustainability through Coupled Hydro-Bio-Mechanical Modeling of Municipal Solid Waste
【24h】

Attaining Landfill Sustainability through Coupled Hydro-Bio-Mechanical Modeling of Municipal Solid Waste

机译:通过城市固体废物的水-生物-力学耦合模型实现垃圾填埋场的可持续性

获取原文
获取原文并翻译 | 示例

摘要

Disposal of municipal solid waste (MSW) in landfills is one of the most commonly adopted options to manage MSW in the United States and many other countries worldwide. Bioreactor landfills that involve controlled injection of leachate to increase moisture and distribute nutrients/microbes within the MSW are being practiced as a means for striving towards sustainability in solid waste management. In bioreactor landfill, enhanced moisture levels promote rapid MSW biodegradation, faster MSW compression and the waste stabilization, thus eliminating long term environmental risk to the surrounding environment and public. However, the dynamic coupled hydraulic, biodegradation and mechanical processes in bioreactor landfills significantly affect the MSW compression, slope stability and in-plane shear response (shear stress-displacement) of the composite side slope and base liner and final cover system. This study presented a new mathematical modeling framework based on a rational approach for designing new bioreactor landfills as well as optimizing the performance of existing bioreactor landfills subjected to coupled hydro-bio-mechanical processes. The mathematical modeling framework was developed by integrating and simultaneously solving a mechanical model based on plain-strain formulation of Mohr-Coulomb criterion, a hydraulic two-phase flow model based on 2-D unsaturated Richards's equation and a biodegradation model formulated using the first-order decay kinetics similar to USEPA's LandGEM model. The developed framework was validated based on previous laboratory experiment and a field monitoring study. Afterwards, the integrated mathematical framework was employed to evaluate the performance of bioreactor landfills, such as, flow and distribution of moisture, the stability of landfill slopes, the landfill settlement, the changes in geotechnical properties with waste degradation, and the interface shear stress-displacement response of composite side slope and bottom liner and final cover systems. Moreover, a parametric study using the coupled hydro-bio-mechanical framework was performed to assess various system designs and operational conditions, namely: the bioreactor landfill slope configurations, the geometric configuration of trench systems, and the modes (continuous v/s intermittent) of leachate injection. In addition, Monte-Carlo simulations and reliability assessment of performance of bioreactor landfills were carried out by employing the coupled mathematical framework to examine the influence of spatial variability (uncertainties) in major geotechnical properties of MSW (e.g., unit weight, shear strength, anisotropy, saturated hydraulic conductivity, initial saturation, porosity, residual saturation, and unsaturated hydraulic parameters). Overall, this research study provided a new mathematical modeling framework that can account for both spatial and temporal changes in major geotechnical properties of MSW due to the extent of degradation, and successfully predicts the long-term performance (e.g., landfill settlement and stabilization, slope stability, hydraulic response, and liner interface shear response) of bioreactor landfills subjected to coupled hydro-bio-mechanical processes during leachate injection. Additional research is warranted to formulate/validate the model to accurately account for biodegradation of MSW and its effects on constitutive behavior and geotechnical properties of MSW, validate the model based on full-scale field bioreactor performance data, evaluate coupled response of bioreactor landfills under various landfill configurations with varying cover and liner systems, and perform reliability assessment with variable mechanical, hydraulic and biodegradation properties of MSW. Moreover, the effects of temperature on properties of MSW and coupled processes should be investigated.
机译:在美国和全球其他许多国家,将城市固体废物(MSW)处置在垃圾填埋场中是管理MSW的最常用方法之一。人们正在实践生物反应堆填埋场,其中涉及控制渗滤液的注入以增加水分并在城市固体垃圾中分配养分/微生物,这是努力实现固体废物管理可持续性的一种手段。在生物反应器垃圾填埋场中,水分含量的提高促进了城市固体废弃物的快速生物降解,更快的城市固体废弃物压缩和废物稳定,从而消除了对周围环境和公众的长期环境风险。但是,生物反应堆填埋场中的动态耦合水力,生物降解和机械过程会显着影响复合材料侧坡和底衬以及最终覆盖系统的MSW压缩,边坡稳定性和面内剪切响应(剪切应力-位移)。这项研究提出了一种基于合理方法的新数学建模框架,用于设计新的生物反应器垃圾填埋场以及优化现有生物反应器垃圾填埋场在水-生物-机械过程耦合作用下的性能。数学建模框架是通过整合并同时求解基于Mohr-Coulomb准则的纯应变公式的机械模型,基于二维不饱和Richards方程的水力两相流模型以及使用第一级公式建立的生物降解模型而开发的与USEPA的LandGEM模型相似的阶跃动力学。根据之前的实验室实验和现场监测研究,对开发的框架进行了验证。之后,采用综合数学框架评估生物反应堆填埋场的性能,例如水分的流动和分布,填埋场边坡的稳定性,填埋场沉降,随着废物降解而引起的岩土特性变化以及界面剪切应力-复合材料边坡,底衬和最终覆盖系统的位移响应。此外,使用耦合的水-生物-机械框架进行了参数研究,以评估各种系统设计和运行条件,即:生物反应器垃圾填埋场的坡度配置,沟槽系统的几何配置以及模式(连续v / s间歇)渗滤液注射。此外,通过使用耦合数学框架研究了空间变异性(不确定性)对城市固体废弃物主要岩土属性(例如单位重量,剪切强度,各向异性)的影响,对生物反应堆填埋场性能进行了蒙特卡洛模拟和可靠性评估。 ,饱和水力传导率,初始饱和度,孔隙率,残余饱和度和不饱和水力参数)。总的来说,这项研究提供了一个新的数学建模框架,该框架可以说明由于退化程度而引起的城市固体废弃物主要岩土属性的时空变化,并可以成功预测长期性能(例如,垃圾填埋场的沉降和稳定,坡度)。渗滤液注入过程中经历了水-生物-机械过程耦合的生物反应堆填埋场的稳定性,水力响应和衬里界面剪切响应)。有必要进行进一步的研究来制定/验证模型,以准确地说明城市固体废弃物的生物降解及其对城市固体废弃物的本构行为和岩土特性的影响,基于全面的现场生物反应器性能数据验证模型,评估各种条件下生物反应器垃圾填埋场的耦合响应具有变化的覆盖物和衬里系统的垃圾填埋场配置,并通过MSW的可变机械,液压和生物降解特性执行可靠性评估。此外,应研究温度对城市固体废弃物性质和耦合过程的影响。

著录项

  • 作者

    Giri, Rajiv Kumar.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 398 p.
  • 总页数 398
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号