首页> 外文学位 >Detection and Characterization of Single Nanoparticles Using Low-aspect-ratio Silicon Nitride Nanopores
【24h】

Detection and Characterization of Single Nanoparticles Using Low-aspect-ratio Silicon Nitride Nanopores

机译:低纵横比氮化硅纳米孔对单个纳米颗粒的检测和表征

获取原文
获取原文并翻译 | 示例

摘要

Nanopore-based single nanoparticle detection methods have found recently increasing importance in applications ranging from gaining a better understanding of biophysical processes to technology-driven solutions such as biomolecule sensing and nanoparticle characterization. The significant advantages of nanopores include label-free, high throughput, and low material requirement. However, challenges remain especially in terms of further improving sensitivity and specificity of such methods, which are the two most important factors to take into account for biomolecule/particle sensing.;This work aims to improve nanopore-based nanoparticle sensing. We first use nanopore resistive pulse sensing to detect translocation of nanobeads through low-aspect-ratio silicon nitride nanopores. Resistive-pulse sensing utilizes the principle that a single particle in a pore filled with conductive solution decreases the ionic conductance of the orifice. Transit of the particle through the pore is observed as a dip in the ionic current. We used this principle to detect 50 and 100 nm polystyrene particles modified with carboxyl group. Our result shows that the translocation current of these two nanoparticles are different, and the translocation frequency increases non-linearly with the nanoparticle concentration. We also found that often translocating particles become permanently stuck onto the nanopore surface, causing the experiment to end prematurely.;In the second half of this thesis, we present a new nanopore-based sensing method that does not only overcome the clogging limitation, but actually exploits the ionic current change and induced Brownian noise caused by the blockage to characterize the properties of single nanoparticles. The technique consists of electrokinetically trapping and de-trapping of particles near a nanopore, which happens when the diameter of the nanopore is smaller than that of the particles. We prove that trapping occurs due to a balance between two counteracting factors: electrophoretic and electroosmotic forces. The motion of the trapped nanoparticle can then be modeled as a damped harmonic oscillator. We use the new trapping phenomenon to characterize nanoparticles with different sizes and charges, each of which gives different blockage current and spring constant. We also study the dependence of applied voltage on the blockage current and spring constant, which shows the ability to tune the position of trapping and force exerted on the nanoparticle. This new technique may find applications in drug delivery, transport control, and biosensing.
机译:基于纳米孔的单个纳米颗粒检测方法最近在应用中的重要性日益提高,从对生物物理过程的更好理解到技术驱动的解决方案,如生物分子传感和纳米颗粒表征,都应运而生。纳米孔的显着优势包括无标记,高通量和低材料要求。然而,尤其是在进一步提高此类方法的灵敏度和特异性方面仍存在挑战,这是生物分子/颗粒感测要考虑的两个最重要因素。这项工作旨在改进基于纳米孔的纳米颗粒感测。我们首先使用纳米孔电阻脉冲感应来检测低纵横比的氮化硅纳米孔的纳米珠移位。电阻脉冲感应利用的原理是,充满导电溶液的孔中的单个颗粒会降低孔的离子电导率。观察到粒子通过孔的过渡是离子电流的下降。我们使用这一原理检测了被羧基修饰的50和100 nm聚苯乙烯颗粒。我们的结果表明,这两种纳米粒子的易位电流不同,并且易位频率随纳米粒子的浓度呈非线性增加。我们还发现,经常易位的颗粒会永久性地附着在纳米孔表面上,从而导致实验过早地结束。在本文的下半部分,我们提出了一种新的基于纳米孔的传感方法,该方法不仅克服了堵塞的局限性,而且实际上是利用离子电流的变化和由阻塞引起的布朗噪声来表征单个纳米粒子的特性。该技术包括在纳米孔附近用电动力学俘获和去除颗粒,当纳米孔的直径小于颗粒直径时发生。我们证明捕获是由于两个抵消因素之间的平衡而产生的:电泳力和电渗力。然后可以将捕获的纳米粒子的运动建模为阻尼谐波振荡器。我们使用新的俘获现象来表征具有不同大小和电荷的纳米粒子,每个粒子具有不同的阻塞电流和弹性常数。我们还研究了施加电压对阻塞电流和弹簧常数的依赖性,这显示了调节俘获位置和施加在纳米粒子上的力的能力。这项新技术可能会在药物输送,运输控制和生物传感中找到应用。

著录项

  • 作者

    Yazbeck, Rami.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Mechanical engineering.;Bioengineering.;Nanotechnology.
  • 学位 M.S.
  • 年度 2018
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号