首页> 外文学位 >CMOS Integration of High Performance Quantum Dot Lasers for Silicon Photonics
【24h】

CMOS Integration of High Performance Quantum Dot Lasers for Silicon Photonics

机译:硅光子学高性能量子点激光器的CMOS集成

获取原文
获取原文并翻译 | 示例

摘要

Integration of III-V components on Si substrates is required for realizing the promise of Silicon Photonic systems. Specifically, the direct bandgap of many III-V materials is required for light sources, efficient modulators and photodetectors. Several different approaches have been taken to integrate III-V lasers into the silicon photonic platform, such as wafer bonding, direct growth, butt coupling, etc. Here, we have devised a novel laser design that overcomes the above limitations. In our approach, we use InAs quantum dot (QD) lasers monolithically integrated with silicon waveguides and other Si photonic passive components. Due to their unique structures, the QD lasers have been proven by several groups to have the combination of high temperature stability, large modulation bandwidth and low power consumption compared with their quantum well counterparts, which makes it an ideal candidate for Si photonic applications. The first section of this dissertation introduces the theory and novelty of QD lasers, the DC and RF characterization methods of QD lasers are also discussed. The second section is focused on the growth of QD gain chip which a broadband gain chip based on QD inhomogeneous broadening properties was demonstrated. In third section, the lasers devices are built on Si substrate by Pd wafer bonding technology. Firstly, a ridge waveguide QD laser is demonstrated in this section which have better heat dissipation and lower threshold current compared to the unbonded lasers. In section four, a on Si comb laser is also developed. Due to inhomogeneous broadening and ultrafast carrier dynamics, InAs quantum dots have key advantages that make them well suited for Mode-locked lasers (MLLs). In section five, a passively mode-locked InAs quantum dots laser on Si is achieved at a repetition rate of ∼7.3 GHz under appropriate bias conditions. In section six, a butt-joint integration configuration based on QD lasers and silicon photonics ring resonator is tested by using to translation stage. In order to achieve the on chip butt-joint integration, an on chip laser facet was created in section seven. A novel facet etching method is developed by using Br-ion beam assist etching (Br-IBAE). In section eight, a Pd-GaAs butt-joint integration platform was proposed, a hybrid tunable QD laser which consist of a QD SOA gain chip butt joint coupled with a passive Si3N4 photonic integrated circuit is proof of concept by using an external booster SOA coupled with a Si3N4 ring reflector feedback circuit. The final section summarized the work discussed in this thesis and also discussed some future approaches by using QD lasers integrated with silicon photonics integrated circuits based on the Pd-GaAs wafer bonding butt-joint coupled platform.
机译:为了实现硅光子系统的前景,需要在Si衬底上集成III-V组分。具体而言,光源,高效调制器和光电检测器需要许多III-V材料的直接带隙。已经采取了几种不同的方法将III-V激光器集成到硅光子平台中,例如晶片键合,直接生长,对接耦合等。在这里,我们设计了一种新颖的激光器设计,克服了上述限制。在我们的方法中,我们使用与硅波导和其他Si光子无源组件整体集成的InAs量子点(QD)激光器。由于其独特的结构,QD激光器已被多个小组证明,与量子阱激光器相比,具有高温稳定性,大调制带宽和低功耗的组合,这使其成为Si光子应用的理想之选。本文的第一部分介绍了QD激光器的理论和新颖性,并讨论了QD激光器的DC和RF表征方法。第二部分集中在QD增益芯片的增长上,展示了基于QD不均匀扩展特性的宽带增益芯片。第三部分,通过Pd晶圆键合技术将激光器件构建在Si衬底上。首先,在本节中将演示脊形波导QD激光器,与非粘结激光器相比,它具有更好的散热性能和更低的阈值电流。在第四部分中,还开发了硅上梳状激光器。由于不均匀的展宽和超快的载流子动力学,InAs量子点具有关键优势,使其非常适合锁模激光器(MLL)。在第五部分中,在适当的偏置条件下,以约7.3 GHz的重复频率实现了在Si上的被动锁模InAs量子点激光器。在第六部分中,通过使用平移台测试了基于QD激光器和硅光子环形谐振器的对接集成配置。为了实现片上对接集成,在第七节中创建了一个片上激光刻面。通过使用Br离子束辅助蚀刻(Br-IBAE)开发了一种新颖的刻面蚀刻方法。在第八部分中,提出了一种Pd-GaAs对接集成平台,该混合可调谐QD激光器由QD SOA增益芯片对接与无源Si3N4光子集成电路组成,是通过使用外部升压SOA耦合进行的概念验证。带有Si3N4环形反射器反馈电路。最后一部分总结了本文所讨论的工作,并讨论了基于QD激光器与基于Pd-GaAs晶片键合对接耦合平台的硅光子集成电路集成的未来方法。

著录项

  • 作者

    Wang, Zihao.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Electrical engineering.;Labor economics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号