首页> 外文学位 >Fabrication and Analysis of Multifunctional Carbon Nanotube Electrical Conductors
【24h】

Fabrication and Analysis of Multifunctional Carbon Nanotube Electrical Conductors

机译:多功能碳纳米管导体的制备与分析

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotube (CNT) bulk conductors have been proposed as an alternative material to metals for power and data transmission applications due to their light weight, flexure tolerance, and chemical stability. However, current fabrication technologies prevent bulk CNT wires from matching the electrical properties of individual CNTs, providing opportunity for researchers to improve CNT wire fabrication.;In this work, CNT conductors have been advanced using high-purity laser-vaporized single wall carbon nanotubes (SWCNTs). Acid dispersion and extrusion of SWCNTs into a coagulant bath was used to fabricate wires and systematic modification of the process has determined that coagulation dynamics govern the resulting wire properties. Extrusion of highly aligned and dense, acid-doped SWCNT wires yielded wires with record-setting electrical conductivities of 5.1 MS/m. An extrusion apparatus has been designed and built to scale up the fabrication process and has reduced variability in wire conductivity from 30% to 6% for samples 10's of meters long. The high-current behavior of extruded SWCNT wires and commercially available CNT yarns has been investigated in a variety of ambient conditions. Comparison of electrical testing scenarios has determined that voltage-controlled testing is the proper method of characterizing CNT wires at high currents. Maximum current densities of 420 MA/m2 for extruded SWCNT wires were reached in helium, 10x greater than that reached in helium by commercial CNT yarns and exceeding fuse-law behavior for aluminum wires of equivalent diameter.;Further work to enhance CNT electrical conductivity was conducted using IBr chemical doping. Electrical enhancement of commercial CNT sheets and dopant adsorption were correlated and determined to be solvent dependent. A mechanism is proposed where low-dipole moment solvent systems favor the IBr-CNT interaction over the IBr-solvent and the solvent-CNT interactions. The optimal IBr doping conditions from the work were applied to commercial CNT yarns leading to an improvement in conductivity of 13.4x to a value of 1.4 MS/m. High voltage testing in air shows a 36% increase in maximum current, compared to as-received commercial CNT yarns. This dissertation research demonstrates the importance of SWCNT purity and selection of coagulation conditions to promote high-density, aligned SWCNT wires. Delivery of chemical dopants with high electrochemical potential through solvents which favor dopant-CNT interactions enhances electrical conductivity and maximum current density, achieving CNT wires capable of competing with metal conductors for electrical transmission applications.
机译:碳纳米管(CNT)块状导体因其重量轻,抗挠曲性和化学稳定性而被提议作为电力和数据传输应用中金属的替代材料。然而,当前的制造技术阻止散装的CNT导线匹配单个CNT的电特性,为研究人员提供了改进CNT导线制造的机会。在这项工作中,CNT导体已经使用高纯度激光蒸发的单壁碳纳米管进行了开发( SWCNT)。酸分散和将SWCNT挤出到混凝剂中用于制造金属丝,对工艺的系统修改已确定凝结动力学决定了最终的金属丝性能。高度对齐且致密的,掺酸的SWCNT线材的挤出产生的电导率达到创纪录的5.1 MS / m。设计和制造了一种挤压设备,以扩大制造过程的规模,并将长度10米的样品的导线电导率变异性从30%降低到6%。已在各种环境条件下研究了挤出的SWCNT丝和市售CNT纱线的高电流行为。电气测试方案的比较已确定,电压控制测试是表征高电流下CNT导线的正确方法。挤压的SWCNT导线在氦气中达到的最大电流密度为420 MA / m2,比市售CNT纱线达到的最大电流密度高十倍,并且超过了等效直径的铝线的熔断定律行为;进一步的工作是增强CNT的导电性使用IBr化学掺杂进行。商用CNT片材的电增强作用与掺杂剂吸附相关,并确定其与溶剂有关。提出了一种机制,其中低偶极矩溶剂系统更倾向于IBr-CNT相互作用而不是IBr-溶剂和溶剂-CNT相互作用。将工作中的最佳IBr掺杂条件应用于商用CNT纱线,从而将电导率提高了13.4倍,达到1.4 MS / m。与原先的商用CNT纱线相比,在空气中进行高压测试显示最大电流增加了36%。这项研究证明了SWCNT纯度和选择凝固条件对于促进高密度,对齐的SWCNT线的重要性。通过有利于掺杂剂与CNT相互作用的溶剂输送具有高电化学势的化学掺杂剂,可增强电导率和最大电流密度,从而获得能够与金属导体竞争用于电传输应用的CNT导线。

著录项

  • 作者

    Bucossi, Andrew Robert.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Nanotechnology.;Chemical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号