首页> 外文学位 >Compositional and Diagenetic Controls of Hardness in Siliceous Mudstones of the Monterey Formation, Belridge Oil Field, CA: Implications for Fracture Development
【24h】

Compositional and Diagenetic Controls of Hardness in Siliceous Mudstones of the Monterey Formation, Belridge Oil Field, CA: Implications for Fracture Development

机译:加利福尼亚州贝尔里奇油田蒙特里组硅质泥岩中硬度的成分和成岩控制:对裂缝发育的影响

获取原文
获取原文并翻译 | 示例

摘要

Rock hardness, as a proxy for geomechanical properties of brittleness and unconfined compressive strength, is useful as a high-resolution tool for fracture prediction. This study examines the compositional and diagenetic influences on rebound hardness of upper Monterey Formation mudstones in the San Joaquin Basin of California. The hardness of highly siliceous mudstones evolves through multiple stages of silica diagenesis (opal-A to opal-CT to quartz). Silica diagenesis occurs in two steps that dramatically change porosity from about 60% to 40% to 20% at about 2,000 feet and 5,500 feet of burial depth, respectively. Each step creates a more crystalline and connected silica framework that is increasingly prone to brittle failure. Micro-rebound hardness (HLD) and X-ray fluorescence scanning data show that proportion of diagenetic silica relative to clay-rich detritus is the primary influence on rock hardness within any single diagenetic phase. In general, rocks with higher silica contents are harder. Silica diagenesis increases mean hardness by 69% from opal-A to opal-CT but only 10% from opal-CT to quartz. In rocks buried to 12,500 feet, hardness increases by 24% occurs with no additional silica-phase change but through compaction and cementation during illitization and catagenesis. Opal-A mudstones failed to show a clear trend of hardness to most physical properties. In opal-CT and 6000-foot quartz phase mudstones hardness trends converge at greater than 70% diagenetic silica. Failure by brittle jointing is likely to prevail at >775 HLD in 12,000-foot quartz phase mudstones. The Monterey Formation is consistently harder and potentially more heterogeneous than the Marcellus, Niobrara, Eagle Ford, Horn River, and Woodford shale formations. This study clearly demonstrates an evolution of mechanical stratigraphy due to silica diagenesis; a process that may be under-regarded in the timing of natural fractures of other shales with siliceous components.
机译:岩石硬度,作为脆性和无侧限抗压强度的地质力学特性的代用品,可用作裂缝预测的高分辨率工具。这项研究探讨了组成和成岩作用对加利福尼亚州圣华金盆地上蒙特利组泥岩回弹硬度的影响。高硅质泥岩的硬度通过二氧化硅成岩作用的多个阶段(从蛋白石A到蛋白石CT到石英)演变而来。二氧化硅成岩作用分为两个步骤,分别在大约2,000英尺和5,500英尺的埋深处将孔隙度从大约60%变为40%到20%。每个步骤都产生了更加结晶和连接的二氧化硅骨架,该骨架越来越容易发生脆性破坏。微回弹硬度(HLD)和X射线荧光扫描数据表明,成岩二氧化硅相对于富粘土碎屑的比例是任何单个成岩相中对岩石硬度的主要影响。通常,二氧化硅含量较高的岩石较硬。从蛋白石A到蛋白石CT,二氧化硅的成岩作用使平均硬度增加了69%,而从蛋白石CT到石英,则仅增加了10%。在埋入12,500英尺的岩石中,硬度增加了24%,没有其他硅石相变,而是通过在致密化和催化作用期间的压实和胶结作用而发生的。蛋白石-A泥岩对大多数物理性质均未显示出明显的硬度趋势。在蛋白石CT和6000英尺石英相泥岩中,硬度趋势收敛于70%以上的成岩二氧化硅。在12,000英尺石英相泥岩中,> 775 HLD时,脆性接缝可能会失败。蒙特利岩层始终比马塞勒斯,尼奥布拉拉,鹰福特,霍恩河和伍德福德的页岩岩层更坚硬,并且可能更加非均质。这项研究清楚地表明了二氧化硅成岩作用引起的机械地层学演化。在含硅质组分的其他页岩天然裂缝发生时机可能被忽视的过程。

著录项

  • 作者

    Weller, Ryan M.;

  • 作者单位

    California State University, Long Beach.;

  • 授予单位 California State University, Long Beach.;
  • 学科 Geology.
  • 学位 M.S.
  • 年度 2018
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号