首页> 外文学位 >Evaluation of the measurement of biomolecular dipole moment: Dielectric and electrolytic solution parameters by calorimetry.
【24h】

Evaluation of the measurement of biomolecular dipole moment: Dielectric and electrolytic solution parameters by calorimetry.

机译:评估生物分子偶极矩的测量:通过量热法测量介电和电解液参数。

获取原文
获取原文并翻译 | 示例

摘要

Solutions of biological macromolecules are known to express non-ideality phenomena at physiological conditions. The interaction mechanisms that govern solution characteristics arise out of the electrostatic properties of the macromolecules and attendant solution components. Macromolecule charge and charge asymmetry are thought to be dominant electrostatic properties influencing molecular interactions in solution. The macromolecule charge asymmetry can be approximated as a maacrodipole moment and measured by evaluating a dielectric increment through dielectric spectroscopy methods. In this study, methods of dielectric spectroscopy are evaluated for measurements of macromolecules in physiologically relevant solvents. Novel techniques for dielectric spectroscopy are proposed, including a parallel plate capacitor technique and two methods of dielectric spectroscopy by calorimetry. Prototype designs are constructed, and recommendations are provided to mitigate and correct for electrode polarization difficulties.;A capillary calorimetry technique is developed for measuring the conductivity of a small sample volume, ~20 microl, and is shown to measure a conductivity difference above a 2% limit of detection. However, further refinements are necessary to improve reproducibility of the device. The capillary calorimeter will likely not be able to extend to the high frequency field range necessary to evaluate a dielectric increment and dipole moment of biologic macromolecules. Nevertheless, small volume measurements of low frequency conductivity may prove useful in identifying activity characteristics of macromolecule solutions and should be investigated further as a tool for pharmacological research. Work going forward to identify methods for macrodipole measurement should focus on advancing parallel plate capacitance designs to minimize electrode polarization effects.
机译:已知生物大分子溶液在生理条件下表达非理想现象。控制溶液特性的相互作用机理源于大分子和伴随的溶液组分的静电特性。大分子电荷和电荷不对称被认为是影响溶液中分子相互作用的主要静电性质。可以将大分子电荷不对称性近似为马叉偶极矩,并通过介电谱方法评估介电常数来进行测量。在这项研究中,对介电谱方法进行了评估,以测量生理相关溶剂中的大分子。提出了用于介电谱的新技术,包括平行板电容器技术和通过量热法的两种介电谱方法。构建了原型设计,并提供了缓解和纠正电极极化困难的建议。毛细管量热技术被开发用于测量约20微升的小样品体积的电导率,并显示出可测量2以上的电导率差检测限百分比。然而,需要进一步的改进以提高装置的再现性。毛细管量热仪可能无法扩展到评估生物大分子的介电增量和偶极矩所需的高频场范围。然而,小体积的低频电导率测量可能被证明可用于识别大分子溶液的活性特征,应作为药理研究的工具进行进一步研究。确定大偶极测量方法的工作应集中在推进平行板电容设计上,以最大程度地减小电极极化效应。

著录项

  • 作者

    Pearson, Joseph Z.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Chemistry Biochemistry.;Biophysics General.
  • 学位 M.S.
  • 年度 2014
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号