首页> 外文学位 >An AWGR based Low-Latency Optical Switch for Data Centers and High Performance Computing Systems.
【24h】

An AWGR based Low-Latency Optical Switch for Data Centers and High Performance Computing Systems.

机译:用于数据中心和高性能计算系统的基于AWGR的低延迟光开关。

获取原文
获取原文并翻译 | 示例

摘要

The growing demand for cloud-based services and high-performance computing has spurred interest in new datacenter architectures. The network inside the data center is quite different from wide-area and local-area networks that have been the subject of intensive research over the past few decades. Datacenter networks have to be scalable to hundreds of thousands of nodes and capable of handling bursty traffic comprised of small packets. Both network performance (in terms of latency and throughput) and power consumption have become critical in datacenters. The poor scalability of high-bandwidth single-stage electrical switches results in a cost-prohibitive and power-hungry solution for interconnecting all the clusters in a data center.;Single-stage, high-port-count, and high-data-rate optical switches can potentially help to meet this requirement by replacing the electronic switches at both the core level and cluster level inside a datacenter. In fact, an optical switch can easily support 10 Gb/s and 40 Gb/s traffic, and offer much higher throughput and lower latency under high traffic loads by creating parallel data paths based on optical parallelism.;This work presents an advanced, scalable AWGR based optical switch for data centers and high performance computing systems that builds upon several enabling technologies such as the widely tunable semiconductor lasers, the monolithically integrated Mach-Zehnder interferometer wavelength converters, the fast-locking burst-mode CDR circuit and the arrayed waveguide grating routers. With the intelligence delivered by the electrical switch controller and the optical signal processing, scalable and cost effective contention resolution schemes have been developed, which remove the need of electrical loopback buffer and the centralized control plane. The introduction of a novel wavelength conversion technique, which supports multiple modulation formats including QPSK, improves channel spectrum efficiency and system flexibility. In addition, we prove the feasibility of a proposed architecture by demonstrating successful wavelength routing functions on a prototype based on silicon photonic integration technology on a SOI platform.;With the ongoing technology advances and development efforts, we believe that the AWGR based optical switches will play an important role in the next generation optical networks.
机译:对基于云的服务和高性能计算的需求不断增长,激发了人们对新型数据中心架构的兴趣。数据中心内部的网络与过去几十年来进行深入研究的广域网和局域网截然不同。数据中心网络必须可扩展到成千上万个节点,并且能够处理由小数据包组成的突发流量。网络性能(就延迟和吞吐量而言)和功耗都已成为数据中心的关键。高带宽单级电气交换机的可扩展性差,导致互连数据中心中所有集群的成本高昂且耗电的解决方案;单级,高端口数和高数据速率通过在数据中心内部的核心级别和群集级别替换电子交换机,光交换机可以潜在地帮助满足此要求。实际上,光交换机可以轻松地支持10 Gb / s和40 Gb / s流量,并通过基于光并行性创建并行数据路径,在高流量负载下提供更高的吞吐量和更低的延迟。用于数据中心和高性能计算系统的基于AWGR的光开关,它基于多种使能技术,例如可广泛调谐的半导体激光器,单片集成的Mach-Zehnder干涉仪波长转换器,快速锁定的突发模式CDR电路和阵列波导光栅路由器。利用电开关控制器提供的智能和光信号处理,已经开发了可扩展且具有成本效益的竞争解决方案,从而消除了对电环回缓冲器和集中控制平面的需求。引入了一种新颖的波长转换技术,该技术支持包括QPSK在内的多种调制格式,从而提高了信道频谱效率和系统灵活性。此外,通过在SOI平台上基于硅光子集成技术的原型上演示成功的波长路由功能,我们证明了所提出架构的可行性。随着不断发展的技术进步和开发工作,我们相信基于AWGR的光开关将能够在下一代光网络中起着重要的作用。

著录项

  • 作者

    Yu, Runxiang.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.;Engineering General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号