首页> 外文学位 >Pilot Plant Analysis, Experiments, and Control for the Hybridization of Transient Solar Heat with Conventional Utilities
【24h】

Pilot Plant Analysis, Experiments, and Control for the Hybridization of Transient Solar Heat with Conventional Utilities

机译:常规太阳能与瞬时太阳热混合的中试分析,实验和控制

获取原文
获取原文并翻译 | 示例

摘要

The direct capture of solar heat is now commercial for electrical generation at 550 °C (1000 °F), which has provoked interest in solar driven approaches to commodity and fuels production at higher temperatures. However, conventional commodity and fuels facilities often operate continuously regardless of weather and nighttime conditions. Conversely, direct sunlight is immediately lost upon shading by clouds and sunset. Beyond inconvenience, this intermittency has the potential to destroy high temperature equipment through thermal fatigue and thermal shock. To overcome interruptions in solar availability we propose the inclusion of direct sunlight in commodities and fuels production as a supplement to conventional electrical heating. Within this regime conventional utilities are ideally sourced from sustainable stored or orthogonal energy sources. Control is needed to substitute solar, which can be lost within seconds during transient weather, with electrical heat. To explore control strategies for the alternation of solar and electrical heat a new facility was constructed at the University of Colorado, Boulder. Specifically, a 45 kW 18 lamp high-flux solar simulator was erected that approximates the sunlight found in actual concentrated solar plants. Calorimetry was analyzed for the measurement of extreme radiance in this testbed. Results from calorimeter design were applied to radiation measurement from the lamps, which were capable of delivering 9.076+/-0.190 kW of power to a ?10 cm target with a peak flux of 12.50 MW/m2 (12,500 "suns"). During this characterization a previously unknown observer effect was seen that differentiates radiative heat from lamps and the energy delivered by sunlight in actual concentrated solar facilities. This characterization allowed confident experimentation within the lamp testbed for control studies on a 15 kW solar-electric tube furnace for commodities and fuels production. Furnace electric heat was manipulated by four different linear control strategies for the rejection weather transients reproduced by the high-flux solar simulator lamps. These included feedback, feedforward feedback, model predictive control, and model predictive control with a weather forecast. It was found that model predictive control with a forecast best maintained furnace conditions. Prior researchers have suggested that forecasts would be useful in solar control, which was shown across simulation and experiment.
机译:现在,直接捕获太阳热已在550°C(1000°F)的温度下用于商业发电,这引起了人们对在更高温度下以太阳能驱动的商品和燃料生产方法的兴趣。但是,常规的商品和燃料设施经常不受天气和夜间条件的影响而连续运行。相反,由于云层和日落的阴影,直接的阳光立即消失。除了带来不便之外,这种间歇性还可能通过热疲劳和热冲击破坏高温设备。为了克服太阳能供应的中断,我们建议在商品和燃料生产中包括直射阳光,以作为常规电加热的补充。在这种情况下,传统的公用事业理想地来自可持续的存储或正交能源。需要控制以代替太阳能,在瞬态天气中,太阳能可在数秒内损失掉,并产生电热。为了探索太阳能和电热交替的控制策略,科罗拉多大学博尔德分校建造了一个新设施。具体而言,架设了一个45 kW 18灯高通量太阳能模拟器,该模拟器近似于实际集中式太阳能发电厂中发现的太阳光。分析了量热法以测量该测试台中的极端辐射。量热仪设计的结果应用于灯的辐射测量,该灯能够向9.10厘米的目标发射9.076 +/- 0.190 kW的功率,峰值通量为12.50 MW / m2(12,500“太阳”)。在此表征过程中,观察到了以前未知的观察者效应,该效应将灯的辐射热与实际集中的太阳能设施中的阳光传递的能量区分开。这种特性使得可以在灯试验台上进行充满信心的实验,以便对用于商品和燃料生产的15 kW太阳能管式炉进行控制研究。炉膛电热通过四种不同的线性控制策略进行控制,以消除高通量太阳能模拟器灯产生的瞬态排斥天气。其中包括反馈,前馈反馈,模型预测控制和带有天气预报的模型预测控制。已经发现,具有预测的最佳预测模型可以保持炉况最佳。先前的研究人员建议,预测将对太阳控制有用,这一点已在模拟和实验中得到了证明。

著录项

  • 作者

    Rowe, Scott Christian.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemical engineering.;Alternative Energy.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号