首页> 外文学位 >Characterization of Ionic Liquid Monopropellants for a Multimode Propulsion System
【24h】

Characterization of Ionic Liquid Monopropellants for a Multimode Propulsion System

机译:用于多模推进系统的离子液体单推进剂的表征

获取原文
获取原文并翻译 | 示例

摘要

Multi-mode micropropulsion is a potential game-changing technology enabling rapidly composable small satellites with unprecedented mission flexibility. Maximum mission flexibility requires one shared propellant between the chemical and electric systems. A deep eutectic 1:2 molar ratio mixture of choline-nitrate and glycerol ([Cho][NO3]--glycerol) is investigated as a fuel component in a binary mixture propellant for such a multi-mode micropropulsion. Specifically, binary mixtures of the novel ionic liquid fuel with hydroxyl-ammonium nitrate (HAN) and ammonium nitrate (AN) are considered and compared against the previously investigated propellant [Emim][EtSO4]-HAN. Chemical rocket performance simulations predict this new propellant to have higher performance at lower combustion temperature, relaxing catalyst melting temperature requirements and making it a promising alternative. A qualitative investigation of synthesized propellants on a hot plate in atmosphere indicates the AN mixtures are significantly less reactive, and are therefore not investigated further. Quantitative reactivity studies using a microreactor indicate both 65:35% and 80:20% by mass [Cho][NO3]--glycerol to HAN propellants have a decomposition temperature 26--88% higher than [Emim][EtSO 4]-HAN, depending on the catalyst material. The results indicate [Emim][EtSO 4]-HAN with platinum catalyst is still most promising as a multi-mode micropropulsion propellant. Also, the linear burn rate of this monopropellant is determined to aid design of the microtube catalytic chemical thruster. With the design pressure of 1.5 MPa the linear burn rate of this propellant used for designing the multi-mode propulsion system is 26.4 mm/s. Based on this result, the minimum flow rate required is 0.31 mg/s for a 0.1 mm inner diameter feed tube and 3180 mg/s for a 10 mm inner diameter feed tube.
机译:多模微推进技术是一项潜在的改变游戏规则的技术,它使空速机动的小型卫星具有前所未有的任务灵活性。最大的任务灵活性要求化学和电气系统之间共享一种推进剂。对于这种多模式微推进器,研究了胆碱-硝酸盐和甘油的深共晶1:2摩尔比混合物([Cho [NO3]-甘油)作为燃料组分在二元混合推进剂中。具体而言,考虑了新型离子液体燃料与羟基硝酸铵(HAN)和硝酸铵(AN)的二元混合物,并将其与先前研究的推进剂[Emim] [EtSO4] -HAN进行了比较。化学火箭性能模拟预测,这种新型推进剂在较低的燃烧温度下将具有更高的性能,从而放宽了催化剂熔化温度的要求,并使其成为有前途的替代方案。在大气中在加热板上对合成推进剂进行定性研究表明,AN混合物的反应性明显较低,因此不再进行进一步研究。使用微反应器进行的定量反应研究表明,按质量计65:35%和80:20%的[Cho [NO3]-甘油对HAN推进剂的分解温度均比[Emim] [EtSO 4]-高26--88%。 HAN,取决于催化剂材料。结果表明,含铂催化剂的[Emim] [EtSO 4] -HAN仍是最有前途的多模式微推进剂。同样,确定这种单推进剂的线性燃烧速率以帮助微管催化化学推进器的设计。在1.5 MPa的设计压力下,用于设计多模推进系统的这种推进剂的线性燃烧速率为26.4 mm / s。基于此结果,内径为0.1 mm的进料管所需的最小流速为0.31 mg / s,内径为10 mm的进料管所需的最小流速为3180 mg / s。

著录项

  • 作者

    Mundahl, Alex Jeffrey.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Aerospace engineering.;Engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号