首页> 外文学位 >Development and applications of digital holography to particle field measurement and in vivo biological imaging.
【24h】

Development and applications of digital holography to particle field measurement and in vivo biological imaging.

机译:数字全息技术在粒子场测量和体内生物成像中的发展和应用。

获取原文
获取原文并翻译 | 示例

摘要

Digital in-line holography (DIH) has been applied extensively to characterizations of a variety of particles, including seeding particles in flow measurements, droplets or bubbles in multiphase flows, microorganisms in the ocean, etc. Unlike point-wise and two-dimensional (2D) diagnostic techniques, in one realization DIH provides three-dimensional (3D) measurements of particles located in a detection volume. The particle size, shape and position information is encoded in the interference patterns recorded in a hologram, which must be processed to extract desired particle characteristics. In this study, the HYBRID method is developed as a hologram processing method. Compared with various existing methods, it features automatic selection of thresholds for image segmentation, applicability to arbitrary-shaped particles and validated measurement uncertainties. A refinement procedure, for use in conjunction with the HYBRID method, is further developed to identify and correct erroneously detected particles due to particle overlapping in the in-plane (x-y) directions. The performance and significance of the refinement are demonstrated by applications to calibration holograms of solid particles and experimental holograms of liquid breakup. Finally, DIH with the HYBRID method, as a 3D diagnostic tool, is applied to characterize multiphase drop fragmentation. In particular, the bag breakup of Newtonian and non-Newtonian drops is investigated. A double-pulsed, double-exposure DIH system is configured to record sequential holograms which enable velocity measurements. Breakup morphologies are visualized by 2D images reconstructed from holograms recorded of various breakup phases, and significant difference is found between breakups of Newtonian and non-Newtonian drops. Comparison with phase Doppler anemometry (PDA) measurements confirms the accuracy of size measurement by DIH. It is shown that droplets due to breakup of the bag and those due to breakup of the rim have distinctly different size distributions. The 3D morphology of the intermediate rim is unprecedentedly determined using DIH, from which the volume ratio of the rim is found to be approximately 90%. The axis-symmetry of the bag breakup process is utilized to examine the accuracy of velocity measurements. Consistent with uncertainty quantification results, the out-of-plane velocity has higher uncertainty than in-plane velocities. To improve the out-of-plane accuracy, a cross-beam two-view DIH system is configured to provide high-accuracy 3D velocity measurement. The achieved high-fidelity z-displacements in turn serve as benchmarks for uncertainty quantification of the HYBRID method in the single-beam configuration.;Digital holographic microscopy (DHM), as a method to realize quantitative phase contrast imaging, is mostly applied to in vitro studies of various living cells, whose topological features are derived from the phase of the reconstructed complex amplitude. However, few have reported in vivo applications of DHM to a vertebrate model organism. In this study, DHM is applied to in vivo developmental imaging and quantitative analysis of the zebrafish embryo, which is a popular vertebrate model organism. An off-axis DHM system is configured and calibrated to quantify dimensions of observed structures and cells. The reconstructed amplitude images reveal morphological structures and different cell types inside developing zebrafish embryos at various developmental stages. Using the developed DHM system, the blood flow rate and heart beat rate are quantified to study the effects of elevated D-glucose (abnormal condition) on circulatory and cardiovascular systems of zebrafish embryos. To demonstrate the potential of DHM as a quantitative tool for high throughput screening applications, the post-processing algorithms are implemented in an automated manner. It is shown that DHM is an excellent tool for visualizing cellular dynamics of organogenesis of zebrafish embryos in vivo..
机译:数字在线全息术(DIH)已广泛应用于各种颗粒的表征,包括流量测量中的种子颗粒,多相流中的液滴或气泡,海洋中的微生物等。与点向和二维( 2D)诊断技术,在一种实现中,DIH提供了位于检测体积中的粒子的三维(3D)测量。颗粒尺寸,形状和位置信息以全息图记录的干涉图样编码,必须对其进行处理以提取所需的颗粒特性。在这项研究中,HYBRID方法被开发为全息图处理方法。与各种现有方法相比,它具有自动选择图像分割阈值,适用于任意形状的颗粒以及经过验证的测量不确定度的特点。进一步开发了一种与HYBRID方法结合使用的细化程序,以识别和校正由于在面内(x-y)方向上重叠的粒子而错误检测到的粒子。通过将其应用于固体颗粒的校准全息图和液体分解的实验全息图,证明了改进的性能和重要性。最后,将具有HYBRID方法的DIH作为3D诊断工具,用于表征多相液滴碎片。特别地,研究了牛顿滴和非牛顿滴的袋破裂。双脉冲,双曝光DIH系统配置为记录可进行速度测量的连续全息图。通过从记录各种破裂阶段的全息图重建的2D图像可以看到破裂形态,并且发现牛顿液滴和非牛顿液滴的破裂之间存在显着差异。与相位多普勒风速计(PDA)测量结果的比较证实了DIH进行尺寸测量的准确性。结果表明,由于袋子破裂而产生的液滴和由于轮辋破裂而产生的液滴具有明显不同的尺寸分布。使用DIH前所未有地确定了中间轮辋的3D形态,从中可以发现轮辋的体积比约为90%。袋子分解过程的轴对称性用于检查速度测量的准确性。与不确定性量化结果一致,平面外速度的不确定性高于平面内速度。为了提高平面外精度,跨光束两视图DIH系统配置为提供高精度3D速度测量。所获得的高保真度z位移反过来又成为单光束配置中HYBRID方法不确定性定量的基准。数字全息显微镜(DHM)作为一种实现定量相衬成像的方法,主要用于各种活细胞的体外研究,其拓扑特征来自重构的复振幅的相位。然而,几乎没有报道将DHM体内应用到脊椎动物模型生物中。在这项研究中,DHM用于斑马鱼胚胎的体内发育成像和定量分析,斑马鱼胚胎是一种流行的脊椎动物模型生物。离轴DHM系统经过配置和校准以量化观察到的结构和细胞的尺寸。重建的振幅图像揭示了处于不同发育阶段的斑马鱼胚胎发育过程中的形态结构和不同的细胞类型。使用发达的DHM系统,对血流速率和心跳速率进行量化,以研究D-葡萄糖升高(异常状况)对斑马鱼胚胎循环和心血管系统的影响。为了证明DHM作为高通量筛选应用定量工具的潜力,后处理算法以自动化方式实施。结果表明,DHM是一种出色的工具,可用于可视化体内斑马鱼胚胎器官发生的细胞动力学。

著录项

  • 作者

    Gao, Jian.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号