首页> 外文学位 >Non-parametric and Non-filtering Methods for Rolling Element Bearing Condition Monitoring.
【24h】

Non-parametric and Non-filtering Methods for Rolling Element Bearing Condition Monitoring.

机译:滚动轴承状态监测的非参数和非过滤方法。

获取原文
获取原文并翻译 | 示例

摘要

Rolling element bearings are one of the most significant elements and frequently-used components in mechanical systems. Bearing fault detection and diagnosis is important for preventing productivity loss and averting catastrophic failures of mechanical systems. In industrial applications, bearing life is often difficult to predict due to different application conditions, load and speed variations, as well as maintenance practices. Therefore, reliable fault detection is necessary to ensure productive and safe operations.;Vibration analysis is the most widely used method for detection and diagnosis of bearing malfunctions. A measured vibration signal from a sensor is often contaminated by noise and vibration interference components. Over the years, many methods have been developed to reveal fault signatures, and remove noise and vibration interference components.;Though many vibration based methods have been proposed in the literature, the high frequency resonance (HFR) technique is one of a very few methods have received certain industrial acceptance. However, the effectiveness of the HFR methods depends, to a great extent, on some parameters such as bandwidth and centre frequency of the fault excited resonance, and window length. Proper selection these parameters is often a knowledge-demanding and time-consuming process. In particular, the filter designed based on the improperly selected bandwidth and center frequency of the fault excited resonance can filter out the true fault information and mislead the detection/diagnosis decisions. In addition, even if these parameters can be selected properly at beginning of each process, they may become invalid in a time-varying environment after a certain period of time. Hence, they may have to be re-calculated and updated, which is again a time-consuming and error-prone process. This undermines the practical significance of the above methods for online monitoring of bearing conditions.;To overcome the shortcomings of existing methods, the following four non-parametric and non-filtering methods are proposed: 1. An amplitude demodulation differentiation (ADD) method, 2. A calculus enhanced energy operator (CEEO) method, 3. A higher order analytic energy operator (HO_AEO) approach, and 4. A higher order energy operator fusion (HOEO_F) technique. The proposed methods have been evaluated using both simulated and experimental data.
机译:滚动轴承是机械系统中最重要的元件和常用组件之一。轴承故障检测和诊断对于防止生产力损失和避免机械系统的灾难性故障很重要。在工业应用中,由于不同的应用条件,负载和速度变化以及维护惯例,通常难以预测轴承寿命。因此,可靠的故障检测对于确保生产和安全操作是必要的。振动分析是检测和诊断轴承故障的最广泛使用的方法。来自传感器的测得的振动信号通常会受到噪声和振动干扰分量的污染。多年来,已经开发出许多方法来揭示故障特征,并消除噪声和振动干扰成分。;尽管文献中提出了许多基于振动的方法,但高频共振(HFR)技术是极少数方法之一已获得一定的工业认可。但是,HFR方法的有效性在很大程度上取决于某些参数,例如故障激发共振的带宽和中心频率以及窗口长度。正确选择这些参数通常是知识需求和耗时的过程。特别是,基于故障激发共振的不正确选择的带宽和中心频率而设计的滤波器会滤除真实的故障信息并误导检测/诊断决策。此外,即使可以在每个过程开始时正确选择这些参数,它们在一定时间段后随时间变化的环境中也会变得无效。因此,可能必须重新计算和更新它们,这又是一个耗时且容易出错的过程。这破坏了上述方法在线监测轴承状况的实际意义。为了克服现有方法的缺点,提出了以下四种非参数和非滤波方法:1.幅度解调微分法(ADD), 2.一种演算增强能量算子(CEEO)方法,3.一种高阶分析能量算子(HO_AEO)方法,以及4.一种高阶能量算子融合(HOEO_F)技术。所提出的方法已经使用模拟和实验数据进行了评估。

著录项

  • 作者

    Faghidi, Hamid.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号