首页> 外文学位 >Utility Scale Photovoltaic Plant Variability Studies and Energy Storage Optimization for Ramp Rate Control.
【24h】

Utility Scale Photovoltaic Plant Variability Studies and Energy Storage Optimization for Ramp Rate Control.

机译:公用事业规模的光伏电站可变性研究和能量存储优化,用于斜坡速率控制。

获取原文
获取原文并翻译 | 示例

摘要

A major challenge in integrating high penetrations (>20%) of solar- and wind-energy rests in the grid's ability to cope with the intrinsic variability of these renewable resources. Although such high levels of penetration may be a decade or two away in most operating regions, we must find measures to manage the variability of these sources, especially when conventional market-based approaches are exhausted or ineffective. Furthermore, besides assuring reliability, effective integration of high levels of solar- and wind-power can reduce the `hidden' environmental costs and emissions associated with larger than necessary backup capacity.;With large-scale PV plants (>250 MW) becoming significant generators on the grid in the near future, system operators became concerned about the plants' inherent variability, and questions were raised regarding the predictability and reliability of the output from such PV plants.;In the first part of this research, the variability in the power output of six PV plants in the United States and Canada, with a total installed capacity of 195 MW (AC), is characterized. A new metric called the Daily Aggregate Ramp (DAR) is introduced to quantify, categorize, and compare daily variability across multiple sites. With this metric, and by harmonizing for climatic differences across the plants, we quantified the effect of geographic dispersion in reducing the cloud-induced power fluctuations. In addition, the reduction in variability was assessed by simulating a step by step increase of the plant size at the same location, using individual inverter data. Our data analysis showed maximum ramp rates 0.7, 0.58, 0.53, and 0.43 times the plant's capacity for 5, 21, 48, and 80 MW (AC) plants, respectively.;After the variability in plant outputs was understood and quantified, we investigated algorithms for operating Energy Storage Units (ESU) to perform ramp rate control at the plant level. This task is designed to support proposed plans of grid balancing authorities to deal with ramps of variable energy resources (i.e., solar and wind). ESUs can be used to mitigate penalty fees caused by sharp ramps and perhaps allow for additional revenue streams by participating in grid balancing markets (e.g. frequency regulation). Consequently, we focused on building and optimizing ESU dispatch models for controlling ramp rates of individual PV plants within predetermined levels. The model comprised dispatch strategies tailored to specific fast response ESU technologies (e.g., flywheels, capacitors, batteries). The optimization involved trial and error testing of different combinations of ESU technologies, power and energy capacities, dispatch strategies and violation reduction requirements.;For four PV plants (5, 21, 30.24 and 80 MW) in various North American locations, we found a required ESU power capacity of 2.2, 9, 12 and 22 MW respectively, to mitigate 99% of the violations of a 10%/minute ramp rate limit. These ESU capacities may add capital costs of about ;It is noted that the reported ESU capacity additions and associated costs are based on the assumption of no forecasting or only a one-minute ahead forecasting of cloud-induced solar variability. If forward time forecasting is available, the optimization we developed should result in lower ESU capacity requirements as gradual ramp rate controls could be implemented in advance. Another way to reduce the costs associated with ramp-rate controls is to use the ESU for other revenue-generating activities, such as frequency regulation for which markets exist in different operating regions (e.g. the Real-Time Market of the New York Independent System Operator (NYISO)). Since ramp rate violations in the various facilities we studied, occurred in less than 2% of the time during the year, such additional uses of ESUs are possible.
机译:整合高渗透率(> 20%)的太阳能和风能的主要挑战在于电网应对这些可再生资源固有变化的能力。尽管在大多数运营区域中,如此高的渗透率可能相隔十年或两年,但我们必须找到措施来管理这些来源的可变性,尤其是当传统的基于市场的方法已经用尽或无效时。此外,除了确保可靠性之外,有效集成高水平的太阳能和风能还可以减少与大于所需备用容量相关的``隐藏''环境成本和排放。随着大型光伏电站(> 250 MW)变得越来越重要在不久的将来并网发电的情况下,系统运营商开始担心电站的固有可变性,并就此类光伏电站的输出的可预测性和可靠性提出了疑问。美国和加拿大的六个光伏电站的总功率为195 MW(AC),其输出功率为特征。引入了一种称为“每日汇总坡度(DAR)”的新指标,以量化,分类和比较多个站点之间的每日变化。使用此度量标准,并通过协调植物之间的气候差异,我们量化了地理分散在减少云引起的功率波动中的作用。此外,使用单个逆变器数据,通过在相同位置逐步模拟工厂规模的增加来评估可变性的降低。我们的数据分析显示,对于5兆瓦,21兆瓦,48兆瓦和80兆瓦(AC)电厂,最大斜升率分别是该电厂容量的0.7、0.58、0.53和0.43倍;用于操作储能单元(ESU)在工厂级别执行斜坡率控制的算法。该任务旨在支持电网平衡管理机构提出的计划,以应对可变能源(即太阳能和风能)的倾斜。 ESU可以用来减轻急剧增加带来的罚款,并且可以通过参与电网平衡市场(例如频率调节)来增加收入。因此,我们专注于建立和优化ESU调度模型,以将单个光伏电站的升温速率控制在预定水平内。该模型包括针对特定快速响应ESU技术(例如飞轮,电容器,电池)量身定制的调度策略。优化涉及对ESU技术,电力和能源容量,调度策略和减少违规要求的不同组合进行试验和错误测试。;对于北美各个地区的四个光伏电站(5、21、30.24和80 MW),我们发现了分别需要2.2、9、12和22 MW的ESU功率容量,以缓解99%违反10%/分钟的斜坡速率限制的情况。这些ESU容量可能会增加大约10,000的资本成本。请注意,报告的ESU容量增加和相关成本是基于没有预测或仅提前一分钟预测云诱发的太阳变化的假设。如果可以提供远期预报,我们开发的优化将导致对ESU容量的需求降低,因为可以提前实施渐进式斜率控制。降低与斜坡率控制相关的成本的另一种方法是将ESU用于其他创收活动,例如对频率进行调节,针对这些频率,不同运营区域中存在市场(例如,纽约独立系统运营商的实时市场) (NYISO))。由于我们研究的各种设施中违反斜坡率的情况发生的时间不到一年的2%,因此可能会额外使用ESU。

著录项

  • 作者

    van Haaren, Rob.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Environmental.;Energy.;Psychology General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号