首页> 外文学位 >Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts.
【24h】

Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts.

机译:过渡金属氧化物和羟基氧化物氧逸出电催化剂中的结构-组成-活性关系。

获取原文
获取原文并翻译 | 示例

摘要

Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date.;This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study of Ni-based catalyst materials. Chapter V discusses the synthesis of tin-titanium oxide nanoparticles with tunable lattice constants. These materials could be used to make high-surface-area supports for thin layers of OER catalysts, which is important for maximizing catalyst surface area, minimizing the use of precious-metal catalysts, and optimizing 3D structure for enhanced mass/bubble transport. Finally, Chapter VI summarizes this work and outlines directions for future research.
机译:太阳能分水技术是一种潜在的变革性可再生能源技术。氧气释放反应(OER)的慢动力学限制了太阳能水分解装置的效率,因此构成了该技术广泛实施的障碍。催化剂必须在高氧化条件下在水性电解质中稳定,并且吸收的光最少。 OER催化研究的一个宏伟目标是通过对催化剂活性背后的基本化学原理的全面理解来设计具有更高效率的新材料。然而,迄今为止,在实现这一目标方面进展甚微。本论文详细介绍了解决OER催化领域主要挑战的工作。第一章介绍了该领域的最新技术和挑战。第二章重点介绍了使用超薄膜作为基础研究和催化剂活性比较平台的工作。这项工作的主要结果是(1)鉴定了迄今为止在碱中具有最高OER活性的Ni0.9Fe0.1OOH催化剂,以及(2)在碱中,许多过渡金属氧化物转化为层状羟基氧化物材料,这些材料具有活性催化剂。后一结果对于理解OER催化剂中的结构活性关系至关重要。第三章探讨了这些催化剂的光学性质,利用原位光谱电化学来量化其光吸收。提出了一种新的催化剂性能指标,该指标考虑了由于催化剂引起的光学和动力学损失,并描述了这些因素如何共同影响复合半导体/催化剂光阳极的效率。在第四章中,系统地研究了Ni1-xFexOOH催化剂的基本结构-组成-活性关系。这项工作表明,几乎所有以前的镍基催化剂研究都可能受到铁杂质的影响,这一认识对镍基催化剂材料的未来研究具有重要意义。第五章讨论了具有可调晶格常数的氧化锡钛纳米颗粒的合成。这些材料可用于制造OER催化剂薄层的高表面积载体,这对于最大化催化剂表面积,减少对贵金属催化剂的使用以及优化3D结构以增强质量/气泡传输非常重要。最后,第六章总结了这项工作,并概述了未来的研究方向。

著录项

  • 作者

    Trotochaud, Lena.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Inorganic chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号