首页> 外文学位 >Intelligent Nano/Microgels for Cell Scaffold and Drug Delivery System.
【24h】

Intelligent Nano/Microgels for Cell Scaffold and Drug Delivery System.

机译:用于细胞支架和药物输送系统的智能纳米/微凝胶。

获取原文
获取原文并翻译 | 示例

摘要

Stimulus-responsive polymer microgels swell and shrink reversibly upon exposure to various environmental stimuli such as change in pH, temperature, ionic strength or magnetic fields. Therefore, they become ideal candidates for biomaterial applications. For this work, we focus on the several intelligent microgels and their application on two areas: the cell scaffold and the drug delivery system.;As for the cell scaffold, it can be realized by colloidal supra-structure microgels, which constructed by the thermo-driven gelation of the colloidal dispersion of poly(N-isopropylacrylamide-co-acrylamide) poly(NIPAM- co-AAm) microgels (Chapter 3). Such microgels exhibit a reversible and continuous volume transition in water with volume phase transition temperature (VPTT) ≈ 35 °C and remain partially swollen and soft under physiological conditions. More importantly, the size of the microgel particles can affect the sol-to-gel phase transition of the microgel dispersions, alter the syneresis degree of the constructed colloidal supra-structures, and tailor the cytocompatibility. The constructed colloidal supra-structure can be regarded as a model system for a new class of cell scaffolds.;As for drug delivery system, Chapter 4 and Chapter 5 focus on the development of biocompatible microgels-based systems for delivering a traditional anti cancer drug curcumin. These thermo-responsive core-shell structure microgels are constructed from oligo(ethylene glycol) as a hydrophilic shell and hydrophobic biocompatible materials as core, such as poly(2-vinylanisole) and poly(4-allylanisole). The rationally designed core chain networks can effectively store the hydrophobic curcumin drug molecules via hydrophobic interactions, thus provide high drug loading capacity; while thermo-sensitive nonlinear poly(ethylene glycol) (PEG) gel shell can trigger the drug release by local temperature change, offering sustained drug release profiles. In Chapter 5, additionally embedded of magnetic Fe3O4 nanoparticles enable such hybrid nanogels to delivery pharmaceuticals to a specific site of the body by applying a gradient magnetic field.;Chapter 6 investigated a class of well-defined glucose-sensitive microgels as an insulin drug release carrier, obtained via polymerization of 4-vinylphenylboronic acid (VPBA), 2-(dimethylamino) ethyl acrylate (DMAEA), and andoligo(ethylene glycol)methyl ether methacrylate (MEO5MA). The presence of MEO5MA monomer could retard the glucose-sensitive network from swelling because the rapid hydrogen bonding between the glucose molecules and the ether oxygens of the MEO5MA is prior to the glucose binding to the PBA groups. Therefore, the set point of glucose sensitivity of microgels could be adjusted possibly and result in potential biomedical applications. Compared to the non-imprinted copolymer microgels, the glucose imprinting of the microgels can create and rigidly retain more binding sites complementary to the shape of the target glucose molecule in the crosslinked polymer network, thus improve the sensitivity and selectivity of the microgels in response to the glucose level change. Additionally, the introduction of fluorescent Ag nanoparticles (NPs) to the microgels can realize the integration of optical glucose detection and self-regulated insulin delivery into a single nano-object.
机译:暴露于各种环境刺激(如pH,温度,离子强度或磁场的变化)时,刺激响应性聚合物微凝胶可膨胀并可逆收缩。因此,它们成为生物材料应用的理想候选者。对于这项工作,我们集中于几种智能微凝胶及其在两个领域的应用:细胞支架和药物递送系统。至于细胞支架,它可以通过胶体超结构微凝胶来实现,该胶体是由热构造的。 (N-异丙基丙烯酰胺-共丙烯酰胺)聚(NIPAM-co-AAm)微凝胶的胶体分散体的驱动凝胶化(第3章)。这种微凝胶在水中具有可逆和连续的体积转变,体积相变温度(VPTT)&ap。 35°C,在生理条件下保持部分肿胀和柔软。更重要的是,微凝胶颗粒的大小可以影响微凝胶分散体的溶胶-凝胶相转变,改变所构造的胶体超结构的脱水收缩程度,并调节细胞相容性。构造的胶体超结构可被视为新型细胞支架的模型系统。关于药物输送系统,第4章和第5章着重于开发基于生物相容性微凝胶的系统,以输送传统的抗癌药物姜黄素。这些热响应性核-壳结构微凝胶由寡聚(乙二醇)作为亲水壳,疏水性生物相容性材料作为核,例如聚(2-乙烯基茴香醚)和聚(4-烯丙基茴香醚)构成。合理设计的核心链网络可以通过疏水相互作用有效地储存疏水性姜黄素药物分子,从而具有较高的载药量。而热敏非线性聚(乙二醇)(PEG)凝胶壳可以通过局部温度变化触发药物释放,从而提供持续的药物释放曲线。在第5章中,另外嵌入了磁性Fe3O4纳米颗粒,使这种杂化纳米凝胶能够通过施加梯度磁场将药物递送到人体的特定部位。;第6章研究了一类定义明确的葡萄糖敏感性微凝胶作为胰岛素药物的释放通过4-乙烯基苯基硼酸(VPBA),丙烯酸2-(二甲基氨基)乙酯(DMAEA)和低聚(乙二醇)甲基醚甲基丙烯酸酯(MEO5MA)的聚合获得的载体。 MEO5MA单体的存在可以阻止葡萄糖敏感网络膨胀,因为MEO5MA的葡萄糖分子和醚氧之间的快速氢键是在葡萄糖与PBA基团结合之前。因此,可以调节微凝胶的葡萄糖敏感性的设定点,并导致潜在的生物医学应用。与非印迹共聚物微凝胶相比,微凝胶的葡萄糖印迹可以在交联的聚合物网络中产生并牢固地保留更多与目标葡萄糖分子形状互补的结合位点,从而提高了微凝胶对蛋白质的敏感性和选择性。葡萄糖水平变化。此外,将荧光银纳米颗粒(NPs)引入微凝胶可以实现将光学葡萄糖检测和自我调节的胰岛素递送集成到单个纳米物体中。

著录项

  • 作者

    Shen, Jing.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号