首页> 外文学位 >Co2 assisted processing of biocompatible electrospun polymer blends.
【24h】

Co2 assisted processing of biocompatible electrospun polymer blends.

机译:二氧化碳辅助处理生物相容性电纺聚合物共混物。

获取原文
获取原文并翻译 | 示例

摘要

Current biomedical applications are focused towards solving more challenging problems with sustainable and economic solutions. Drug delivery systems, tissue engineered scaffolds and diagnostic devices are major areas of biomedical systems which require more efficient and benign fabrication and processing. Design of above mentioned systems involves three key components; biomaterial selection, structure and nutrient supply. Various factors such as, biocompatibility, degradation, toxicity, mechanical properties, need to be considered before biomaterial selection for specific application. Polymers are most widely used for biomedical applications due to their ability to tailor properties for specific requirements. Structured patterns are mandatory in most of the biomedical systems such as core-shell structure for drug delivery, porous scaffolds for tissue engineering and microchannels for microfluidics based devices. In the end, these systems demand efficient incorporation of sensitive drug and biomolecules and controlled release. Thus, designing of biomedical systems become a complex process where structure needs to be maintained for a biomaterial throughout the design process. High pressure carbon dioxide (CO2) offers a `green's benign and inexpensive way for fabrication and impregnation of additives in the biocompatible polymers. CO2 assisted plasticization of polymers enhances diffusion of additives in the polymer matrix. However, interactions among polymer, CO2 and additives are complex and difficult to understand. Density and diffusivity of CO2 can be controlled easily by adjusting temperature and pressure. Hence extent of plasticization of polymer can be controlled. In the present study, biocompatible polymer blends were investigated from biomedical applications perspective. Electrospinning is a versatile process to prepare fibrous scaffolds. This process was applied to different binary and ternary blends to fabricate electrospun scaffolds. There scaffolds were impregnated with additives using high pressure CO2 to study release profiles. Results show electrospun polymer blends interact differently with each process step adopted in this study. Effect of dominant impregnation and release parameters were investigated to control and predict release of additives from complex electrospun scaffolds. The work presented in this dissertation aids in understanding of additive release from electrospun polymer blends with complex behavior.
机译:当前的生物医学应用致力于利用可持续和经济解决方案来解决更具挑战性的问题。药物输送系统,组织工程支架和诊断装置是生物医学系统的主要领域,需要更有效和良性的制造和加工。上述系统的设计涉及三个关键部分。生物材料的选择,结构和营养供应。在为特定应用选择生物材料之前,需要考虑各种因素,例如生物相容性,降解,毒性,机械性能。聚合物由于能够根据特定要求调整性能,因此被最广泛地用于生物医学应用。在大多数生物医学系统中,结构模式是必不可少的,例如用于药物输送的核-壳结构,用于组织工程的多孔支架和用于基于微流体的设备的微通道。最后,这些系统需要有效地结合敏感药物和生物分子以及控释。因此,生物医学系统的设计成为一个复杂的过程,在整个设计过程中都需要为生物材料保持结构。高压二氧化碳(CO2)为制造和浸渍生物相容性聚合物中的添加剂提供了一种“绿色”的良性且廉价的方法。二氧化碳辅助的聚合物增塑可增强添加剂在聚合物基质中的扩散。但是,聚合物,CO2和添加剂之间的相互作用复杂且难以理解。可以通过调节温度和压力轻松控制CO2的密度和扩散率。因此,可以控制聚合物的增塑程度。在本研究中,从生物医学应用的角度研究了生物相容性聚合物共混物。电纺丝是制备纤维支架的通用方法。将该方法应用于不同的二元和三元共混物以制造电纺支架。使用高压二氧化碳将脚手架浸入添加剂,以研究释放特性。结果表明,电纺聚合物共混物与本研究中采用的每个工艺步骤的相互作用都不同。研究了主要浸渍和释放参数的影响,以控制和预测添加剂从复杂的电纺支架中的释放。本论文提出的工作有助于理解电纺聚合物共混物中添加剂释放的行为。

著录项

  • 作者

    Munj, Hrishikesh Ramesh.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号