首页> 外文学位 >Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow.
【24h】

Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow.

机译:大型飞溅液体,弹塑性固体和模型减少流量的基于物理的动画。

获取原文
获取原文并翻译 | 示例

摘要

Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation.;Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids.;Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations.;One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies.;Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.
机译:物理模拟已成为计算机动画中必不可少的工具。随着视觉效果的使用增加,对真实世界材料进行模拟的需求也在增加。本文考虑了基于物理的动画中的三个问题:大规模飞溅的液体,弹塑性材料的仿真和降维技术的流体仿真。流体仿真已成为基于物理的动画的最大成功之一,产生了数百个在过去的十五年中发表了大量研究论文,并带来了许多特殊效果。但是,大规模飞溅液体的动画仍然具有挑战性。我们展示了一种单方面不可压缩性,整体质量FLIP和模糊边界的新颖组合非常适合大型,剧烈,飞溅液体的动画;同时包含塑性和弹性变形的材料,也称为弹性材料在日常生活中经常遇到。动画这种常见的现实世界材料的方法对效果练习者很有用,并已成功地应用于电影中。我们描述了一种基于点的方法来对弹塑性材料进行动画处理。我们的主要贡献是一种用于计算模拟中每个粒子的变形梯度的简单方法。给定变形梯度,我们可以应用任意本构模型并计算所得的弹力。我们的方法有两个主要优点:我们不存储或与初始静止配置进行比较,而直接使用变形梯度进行工作。第一个优点避免了不良的数值条件,第二个优点自然导致了适合有限变形的变形的乘法模型;基于物理的动画的最大缺点之一是保真度越来越高导致度数爆炸自由。这个问题导致我们考虑降维技术。我们对减少模型的流体模拟提出了一些改进,这些改进允许改进的模拟基础和双向固液耦合。具体而言,我们提出了一种基础扩充方案,该方案可使我们将数据驱动型或艺术衍生型基础与从拉普拉斯特征函数派生的更通用的分析基础相结合。此外,我们以时间分割的方式处理双向固液耦合-我们交替考虑流体和刚体模拟器的时步,同时考虑到流体对刚体的影响,反之亦然。我们采用涡流面板方法来处理固液耦合,并使用动态压力来计算流体对刚体的影响。总而言之,这些贡献推动了基于物理的动画的最新发展,并且非常实用足以用于生产管道。

著录项

  • 作者

    Gerszewski, Daniel James.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Computer science.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号