首页> 外文学位 >Microwave performance and fabrication of quilt packaging, a novel chip-to-chip interconnect technology.
【24h】

Microwave performance and fabrication of quilt packaging, a novel chip-to-chip interconnect technology.

机译:微波性能和被子包装的制造,一种新颖的芯片到芯片互连技术。

获取原文
获取原文并翻译 | 示例

摘要

Microelectronics packaging forms the link between the nanometer scale transistors on a chip and the micrometer or millimeter scale interconnects that provide electrical connections between chips and other circuit components. For modern digital systems, the number of interconnects is small compared to the number of active devices on the chip, and given the high data processing throughput of many modern systems, the interconnects are by necessity shared or multiplexed. For systems with high data throughput multiplexed through a limited number of interconnects, conventional approaches such as wire bonds and flip-chip interconnects may not offer sufficient signal integrity and bandwidth to handle the required data rates. Interconnect bandwidth and frequency limitations apply to millimeter-wave analog systems as well; the ability to process signals in the millimeter-wave and THz frequency regimes are becoming increasingly important for emerging applications in communications, security, and scientific research. For such millimeter-wave systems, the bandwidth of individual interconnects is paramount, and the packing densities are far less important.;To address these limitations for both digital and analog systems, a direct-coupled chip-to-chip interconnect technology called "quilt packaging" is explored. This technology is based on micro-electro-mechanical system (MEMS) inspired fabrication processing. Quilt packaging uses copper projections called "nodules" to bridge a short air gap between one chip and the next. It is shown experimentally that this technology can directly address interconnect data rate limitations, offering measured insertion losses below 1.4 dB and return losses of better than 12.5 dB from DC to 220 GHz with well-controlled latency and phase. Furthermore, simulations suggest that the technology is promising for further reductions in loss and increases in bandwidth and operational frequency through additional structural optimization.
机译:微电子封装形成芯片上的纳米级晶体管与微米或毫米级互连之间的链接,该互连在芯片与其他电路组件之间提供电连接。对于现代数字系统,与芯片上有源器件的数量相比,互连的数量少,并且鉴于许多现代系统的高数据处理吞吐量,互连必须共享或复用。对于具有通过有限数量的互连多路复用的高数据吞吐量的系统,常规方法(例如引线键合和倒装芯片互连)可能无法提供足够的信号完整性和带宽来处理所需的数据速率。互连带宽和频率限制也适用于毫米波模拟系统。在毫米波和太赫兹频率范围内处理信号的能力对于通信,安全和科学研究中的新兴应用变得越来越重要。对于这样的毫米波系统,单个互连的带宽至关重要,而封装密度则不那么重要。;为了解决数字和模拟系统的这些限制,一种称为“被子”的直接耦合芯片到芯片互连技术包装”。该技术基于微机电系统(MEMS)启发的制造工艺。被子封装使用称为“结节”的铜突起来弥合一个芯片与另一个芯片之间的气隙。实验表明,该技术可以直接解决互连数据速率的限制,提供了良好的时延和相位控制,从DC到220 GHz的实测插入损耗低于1.4 dB,回波损耗优于12.5 dB。此外,仿真表明,该技术有望通过额外的结构优化进一步降低损耗,增加带宽和工作频率。

著录项

  • 作者

    Kopp, David P.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号