首页> 外文学位 >Advanced Hybrid Solar Cell Approaches for Future Generation Ultra-High Efficiency Photovoltaic Devices.
【24h】

Advanced Hybrid Solar Cell Approaches for Future Generation Ultra-High Efficiency Photovoltaic Devices.

机译:用于下一代超高效光伏器件的高级混合太阳能电池方法。

获取原文
获取原文并翻译 | 示例

摘要

Increasing the conversion efficiencies of photovoltaic (PV) cells beyond the single junction theoretical limit is the driving force behind much of third generation solar cell research. Over the last half century, the experimental conversion efficiency of both single junction and tandem solar cells has plateaued as manufacturers and researchers have optimized various materials and structures.;While existing materials and technologies have remarkably good conversion efficiencies, they are approaching their own limits. For example, tandem solar cells are currently well developed commercially but further improvements through increasing the number of junctions struggle with various issues related to material interfacial defects. Thus, there is a need for novel theoretical and experimental approaches leading to new third generation cell structures.;Multiple exciton generation (MEG) and intermediate band (IB) solar cells have been proposed as third generation alternatives and theoretical modeling suggests they can surpass the detailed balance efficiency limits of single junction and tandem solar cells. MEG or IB solar cell has a variety of advantages enabling the use of low bandgap materials. Integrating MEG and IB with other cell types to make novel solar cells (such as MEG with tandem, IB with tandem or MEG with IB) potentially offers improvements by employing multi-physics effects in one device.;This hybrid solar cell should improve the properties of conventional solar cells with a reduced number of junction, increased light-generated current and extended material selections. These multi-physics effects in hybrid solar cells can be achieved through the use of nanostructures taking advantage of the carrier confinement while using existing solar cell materials with excellent characteristics. This reduces the additional cost to develop novel materials and structures.;In this dissertation, the author develops thermodynamic models for several novel types of solar cells and uses these models to optimize and compare their properties to those of existing PV cells. The results demonstrate multiple advantages from combining MEG and IB technology with existing solar cell structures.
机译:将光伏(PV)电池的转换效率提高到单结理论极限以上是许多第三代太阳能电池研究背后的驱动力。在过去的半个世纪中,随着制造商和研究人员优化了各种材料和结构,单结和串联太阳能电池的实验转换效率一直处于平稳状态;虽然现有的材料和技术具有非常好的转换效率,但它们正在接近自己的极限。例如,串联太阳能电池目前在商业上得到了很好的开发,但是通过增加结的数量而进行进一步的改进,以解决与材料界面缺陷有关的各种问题。因此,需要新颖的理论和实验方法来产生新的第三代电池结构。多价激子生成(MEG)和中带(IB)太阳能电池已被提出作为第三代替代品,理论模型表明它们可以超越单结和串联太阳能电池的详细平衡效率限制。 MEG或IB太阳能电池具有多种优势,可使用低带隙材料。通过将MEG和IB与其他类型的电池集成以制造新颖的太阳能电池(例如串联的MEG,串联的IB或IB的MEG),可以通过在一个设备中采用多物理效应来提供改进。减少结数,增加光产生电流并扩展材料选择范围的常规太阳能电池的制造。混合太阳能电池中的这些多物理效应可以通过利用载流子限制的纳米结构来实现,同时使用具有优异特性的现有太阳能电池材料来实现。这减少了开发新型材料和结构的额外成本。本文作者针对几种新型太阳能电池开发了热力学模型,并使用这些模型来优化其性能并将其与现有PV电池进行比较。结果表明,将MEG和IB技术与现有的太阳能电池结构相结合具有多种优势。

著录项

  • 作者

    Lee, Jongwon.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号