首页> 外文学位 >Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics.
【24h】

Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics.

机译:胶体,液晶结构和拓扑缺陷的磁和光学完整操纵,用于表征中尺度自组装和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science.;In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring.;This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.
机译:胶体系统发现了重要的应用,从光子晶体的制造到直接探测原子晶体和玻璃中遇到的现象,应有尽有。探索广泛的科学,工业和生物医学领域的物理学家非常感兴趣的主题。通常可以通过光学捕获方法来实现在各种液体基质介质中精确控制中尺度尺寸颗粒的能力,该方法存在捕获激光强度和产生力固有的局限性。其他限制是由于胶体性质(例如吸光度)和基质性质(例如粘度,不透明度和结构)引起的。因此,胶体操纵的替代方法和/或新颖方法对于提高技术应用和基础科学的发展水平至关重要。本论文中,我演示了一种操纵磁和光的磁光完整控制系统。并显示向列型和胆甾型液晶固有的弹性结构可以以其他介质中无法实现的方式用于辅助颗粒的细化。此外,我展示了这种操纵在表征液晶的结构和微观流变学,以及阐明与这些结构相互作用的胶体的能量学和动力学方面的实用性。我还演示了液晶系统作为台式模型系统的实用性,它可以通过某种方式探测拓扑缺陷,从而可以洞悉其他领域的拓扑相关现象,例如早期宇宙宇宙学,亚原子和高能系统,或者Skrymionic结构。我探讨了胶体表面锚固与胆甾型液晶固有结构之间的相互作用,以及这如何影响球形胶体在样品中经历“下降”运动的周期性动力学和局部亚稳性。这些所谓的“可转移状态”使胶体动力学在非常低的雷诺数下偏离斯托克斯样的行为,并且可以通过考虑颗粒和胆甾型基质之间由于表面锚定而产生的弹性相互作用势的周期性态势来理解。我们对胶体如何与液晶和拓扑缺陷相互作用的理解,并介绍了一种强大的胶体处理方法,具有许多潜在的应用。

著录项

  • 作者

    Varney, Michael C. M.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Optics.;Engineering Materials Science.;Nanotechnology.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号