首页> 外文学位 >Electrostatic potential for the annular capillary geometry.
【24h】

Electrostatic potential for the annular capillary geometry.

机译:环形毛细管几何形状的静电势。

获取原文
获取原文并翻译 | 示例

摘要

Flow through an annular geometry has many applications in chemical, environmental, mechanical and bio-medical engineering. A number of researchers have proposed combining electroosmotic flow (EOF) and pressure-driven flow as a means of controlling the motion and separation of bioparticles in a variety of microfluidic devices, including those with an annular geometry to sort particles using electrophoresis, dielectrophoresis, and electrokinetics techniques.;In order to obtain a reliable model for predicting performance of such micro-based devices, the EOF calculations are studied. A vital aspect of these calculations is based on the electrostatic potential in the device. We present here a systematic investigation of the electrostatic potential distribution in an annular geometry. Our objective in this contribution is to present a mathematical model for the electrostatic potential distribution in a straight annular geometry. The analytical solutions for the electric potential profile in the annulus are obtained by solving the 2D Poisson--Boltzmann equation with both long channel and Debye--Huckel approximations.;The ultimate goal of this research has been to conduct analyses that can be used towards a better understanding of the role of capillary geometry in determining biomolecular separations or, alternatively, mixing. As a result of this investigation, one can assess the behavior of the electrostatic potential inside an annular channel. Two key parameters have been identified to describe the electrostatic potential behavior: 1) the ratio (R) of an imposed upper wall potential to the linear combination of both upper and lower wall potentials, a parameter which handles the symmetrical/non-symmetrical aspects of the electrostatic potential and 2) the inverse Debye length (k) that controls the "shape" of the channel section. Results of this study are illustrated by using a series of portraits that capture the key behaviors of the electrostatic potential with respect to these parameters described above.
机译:通过环形几何形状的流动在化学,环境,机械和生物医学工程中有许多应用。许多研究人员建议将电渗流(EOF)和压力驱动流结合起来,以控制各种微流体装置中生物粒子的运动和分离,包括具有环形几何形状的装置,以利用电泳,介电电泳和为了获得可靠的模型来预测此类微型设备的性能,我们对EOF计算进行了研究。这些计算的重要方面是基于设备中的静电势。我们在这里介绍了环形几何形状中静电势分布的系统研究。我们在此贡献的目标是为直的环形几何形状中的静电势分布提供数学模型。通过求解具有长通道和Debye-Huckel近似的二维Poisson-Boltzmann方程,可以获得环空中的电位分布的解析解;该研究的最终目标是进行分析,以用于更好地了解毛细管几何形状在确定生物分子分离或混合中的作用。这项研究的结果是,人们可以评估环形通道内静电势的行为。已经确定了两个关键参数来描述静电势行为:1)施加的上壁电势与上壁电势和下壁电势的线性组合之比(R),该参数可处理静电的对称性/非对称性2)控制通道部分“形状”的反德拜长度(k)。通过使用一系列捕获上述这些参数的静电势关键行为的肖像来说明这项研究的结果。

著录项

  • 作者

    Motamedilamouki, Abbas.;

  • 作者单位

    Tennessee Technological University.;

  • 授予单位 Tennessee Technological University.;
  • 学科 Engineering Chemical.;Engineering Environmental.;Engineering Biomedical.
  • 学位 M.S.
  • 年度 2014
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地下建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号