首页> 外文学位 >Optimal dictionary learning with application to underwater target detection from synthetic aperture sonar imagery.
【24h】

Optimal dictionary learning with application to underwater target detection from synthetic aperture sonar imagery.

机译:最佳词典学习及其在合成孔径声纳图像中的水下目标检测中的应用。

获取原文
获取原文并翻译 | 示例

摘要

K-SVD is a relatively new method used to create a dictionary matrix that best ts a set of training data vectors formed with the intent of using it for sparse representation of a data vector. K-SVD is fexible in that it can be used in conjunction with any preferred pursuit method of sparse coding including the orthogonal matching pursuit (OMP) method considered in this thesis. Using adaptive lter theory, a new fast OMP method has been proposed to reduce the computational time of the sparse pursuit phase of K-SVD as well as during on-line implementation without sacrficing the accuracy of the sparse pursuit method. Due to the matrix inversion required in the standard OMP, the amount of time required to sparsely represent a signal grows quickly as the sparsity restriction is relaxed. The speed up in the proposed method was accomplished by replacing this computationally demanding matrix inversion with a series of recursive "time-order" update equations by using orthogonal projection updating used in adaptive filter theory. The geometric perspective of this new learning is also provided.;Additionally, a recursive method for faster dictionary learning is also discussed which can be used instead of the singular value decomposition (SVD) process in the K-SVD method. A significant bottleneck in K-SVD is the computation of the SVD of the reduced error matrix during the update of each dictionary atom. The SVD operation is replaced with an efficient recursive update which will allow limited in-situ learning to update dictionaries as the system is exposed to new signals. Further, structured data formatting has allowed a multi-channel extension of K-SVD to merge multiple data sources into a single dictionary capable of creating a single sparse vector representing a variety of multi-channel data.;Another contribution of this work is the application of the developed methods to an underwater target detection problem using coregistered dual-channel (namely broadband and high-frequency) side-scan sonar imagery data. Here, K-SVD is used to create a more optimal dictionary in the sense of reconstructing target and non-target image snippets using their respective dictionaries. The ratio of the reconstruction errors is used as a likelihood ratio for target detection. The proposed methods were then applied and benchmarked against other detection methods for detecting mine-like objects from two dual-channel sonar datasets. Comparison of the results in terms of receiver operating characteristic (ROC) curve indicates that the dual-channel K-SVD based detector provides a detection rate of PD = 99% and false alarms rate of PFA = 1% on the first dataset, and PD = 95% and PFA = 5% on the second dataset at the knee point of the ROC. The single-channel K-SVD based detector on the other hand, provides PD = 96% and PFA = 4% on the first dataset, and PD = 96% and PFA = 4% on the second dataset at the knee point of the ROC. The degradation in performance for the second dataset is attributed to the fact that the system was trained on a limited number of samples from the first dataset. The coherence-based detector provides PD = 87% and PFA = 13% on the first dataset and PD = 86% and PFA = 14% on the second dataset. These results show excellent performance of the proposed dictionary learning and sparse coding methods for underwater target detection using both dual-channel sonar imagery.
机译:K-SVD是一种用于创建字典矩阵的相对较新的方法,该字典矩阵最适合形成一组训练数据向量,目的是将其用于数据向量的稀疏表示。 K-SVD是灵活的,因为它可以与任何稀疏编码的首选跟踪方法结合使用,包括本文中考虑的正交匹配跟踪(OMP)方法。利用自适应滤波理论,提出了一种新的快速OMP方法,以减少K-SVD的稀疏跟踪阶段以及在线实施过程中的计算时间,而不会牺牲稀疏跟踪方法的准确性。由于标准OMP中需要进行矩阵求逆,因此随着稀疏限制的放宽,稀疏表示信号所​​需的时间会迅速增加。通过使用自适应滤波器理论中使用的正交投影更新,通过用一系列递归的“时间顺序”更新方程替换此对计算要求很高的矩阵求逆,从而实现了所提出方法的加速。此外,还讨论了一种用于更快的字典学习的递归方法,该方法可替代K-SVD方法中的奇异值分解(SVD)过程。 K-SVD中的一个重要瓶颈是在每个字典原子更新期间如何计算精简误差矩阵的SVD。 SVD操作已替换为有效的递归更新,当系统暴露于新信号时,该更新将允许有限的就地学习来更新字典。此外,结构化数据格式已允许K-SVD的多通道扩展将多个数据源合并到一个字典中,该字典能够创建表示各种多通道数据的单个稀疏矢量。使用共配准的双通道(即宽带和高频)侧面扫描声纳图像数据解决水下目标检测问题的方法。在此,从重建目标和非目标图像片段使用各自的字典的意义上来说,K-SVD用于创建更好的字典。重建误差的比率用作目标检测的似然比。然后,将所提出的方法应用于其他两个从双通道声纳数据集中检测类地雷物体的检测方法,并与其他检测方法进行比较。根据接收器工作特性(ROC)曲线比较结果表明,在第一个数据集和PD上,基于双通道K-SVD的检测器提供PD = 99%的检测率和PFA = 1%的误报率在ROC拐点处的第二个数据集上= 95%,PFA = 5%。另一方面,基于单通道K-SVD的检测器在ROC拐点处的第一个数据集上提供PD = 96%和PFA = 4%,在第二个数据集上提供PD = 96%和PFA = 4% 。第二个数据集的性能下降归因于以下事实:对系统进行了第一个数据集中有限数量的样本的训练。基于相干性的检测器在第一个数据集上提供PD = 87%和PFA = 13%,在第二个数据集上提供PD = 86%和PFA = 14%。这些结果表明,所提出的字典学习和稀疏编码方法在使用双通道声纳图像进行水下目标检测方面均具有出色的性能。

著录项

  • 作者

    Kopacz, Justin.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2014
  • 页码 52 p.
  • 总页数 52
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号