首页> 外文学位 >Validation of cresis synthetic aperture radar processor and optimal processing parameters.
【24h】

Validation of cresis synthetic aperture radar processor and optimal processing parameters.

机译:cresis合成孔径雷达处理器的验证和最佳处理参数。

获取原文
获取原文并翻译 | 示例

摘要

Sounding the ice sheets of Greenland and Antarctica is a vital component in determining the effect of global warming on sea level rise. Of particular importance are measurements of the bedrock topography of the outlet glaciers that transport ice from the ice sheet's interior to the margin where it calves into icebergs, contributing to sea level rise. These outlet glaciers are difficult to sound due to crevassing caused by the relatively fast movement of the ice in the glacial channel and higher signal attenuation caused by warmer ice. The Center for Remote Sensing of Ice Sheets (CReSIS) uses multi-channel airborne radars which employ methods for achieving better resolution and signal-to-noise ratio (SNR) to better sound outlet glaciers. Synthetic aperture radar (SAR) techniques are used in the along-track dimension, pulse compression in the range dimension, and an antenna array in the cross-track dimension.;CReSIS has developed the CReSIS SAR processor (CSARP) to effectively and efficiently process the data collected by these radars in each dimension. To validate the performance of this processor a SAR simulator was developed with the functionality to test the implementation of the processing algorithms in CSARP. In addition to the implementation of this simulator for validation of processing the data in the along-track, cross-track and range dimensions, there are a number of data-dependent processing steps that can affect the quality of the final data product. CSARP was tested with an ideal simulated point target in white Gaussian noise. The SNR change achieved by range compression, azimuth compression, array combination with and without matched filtering, and lever arm application were all within .2 dB of the theoretical expectation. Channel equalization, when paired with noise-based matched filtering, provided 1-2 dB of gain on average but significantly less than the expected gain. Extending the SAR aperture length to sound bedrock will improve the along-track resolution, but at the expense of SNR. Increasing the taper of a window in the fast-time and slow-time will slightly improve the SNR of the data. Changing the relative permittivity used to process the data improved the resulting SNR by no more than 0.025 dB for the test dataset.
机译:在格陵兰岛和南极洲的冰盖上探测声音是确定全球变暖对海平面上升的影响的重要组成部分。尤为重要的是出口冰川的基岩形貌的测量,这些冰川将冰从冰盖的内部输送到边缘,在该边缘处冰崩成冰山,导致海平面上升。由于出冰口在冰川通道中相对较快的运动引起的裂隙以及由变暖的冰引起的较高的信号衰减,这些出口冰川很难听起来。冰盖遥感中心(CReSIS)使用多通道机载雷达,该雷达采用的方法可实现更好的分辨率和信噪比(SNR),从而获得更好的声音出口冰川。沿径迹方向使用合成孔径雷达(SAR)技术,沿径迹方向使用脉冲压缩,而沿径迹方向使用天线阵列。; CReSIS开发了CReSIS SAR处理器(CSARP)以有效地处理这些雷达在各个维度上收集的数据。为了验证该处理器的性能,开发了具有功能的SAR模拟器来测试CSARP中处理算法的实现。除了使用此模拟器来验证沿航迹,跨航迹和范围维度中的数据处理之外,还有许多与数据相关的处理步骤,这些步骤可能会影响最终数据产品的质量。 CSARP已在理想的模拟高斯白噪声目标点上进行了测试。通过范围压缩,方位角压缩,带和不带匹配滤波的阵列组合以及杠杆臂的应用实现的SNR变化均在理论预期值的0.2 dB之内。通道均衡与基于噪声的匹配滤波配合使用时,平均可提供1-2 dB的增益,但大大低于预期的增益。将SAR孔径长度扩展到合理的基岩将改善沿轨分辨率,但以SNR为代价。在快时间和慢时间中增加窗口的锥度将略微改善数据的信噪比。更改用于处理数据的相对介电常数可使测试数据集的SNR改善不超过0.025 dB。

著录项

  • 作者

    Smith, Logan Sanders.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Electronics and Electrical.;Remote Sensing.
  • 学位 M.S.
  • 年度 2014
  • 页码 85 p.
  • 总页数 85
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号