首页> 外文学位 >Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States
【24h】

Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

机译:使用地理信息系统和美国主要玉米和大豆带的遥感监测农业干旱

获取原文
获取原文并翻译 | 示例

摘要

The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected.;Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean.;Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress.;SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration.;A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).
机译:该研究旨在评估各种遥感干旱指数,以评估最适合监测农业干旱的指数。目标是(1)通过作物图谱信息和GIS技术评估和研究干旱对(玉米和大豆)作物生产的影响; (2)利用内布拉斯加州县级案例研究,使用地理加权回归(GWR)作为评估降水量与灌溉和非灌溉玉米与大豆产量之间空间关系的技术方法; (3)评估来自遥感的农业干旱指数(NDVI,NMDI,NDWI和NDII6); (4)根据遥感测量结果确定农业干旱检测的最佳方法,以确定美国县级产量与收集的相对常见变量之间的关系。极端干旱导致未实施灌溉系统的玉米和大豆产量较低。这导致土壤中缺乏水分,导致旱地和过时的农作物产量。当在所有州发现降水和水分时,玉米和大豆的产量就很高。对于堪萨斯州,内布拉斯加州和南达科他州,灌溉管理方法有助于在SPI的月平均水平上实现高产。关于灌溉的数据包括使用国家农业统计服务网站收集的干旱指数。对于介于1个月到9个月之间的SPI水平,堪萨斯州和内布拉斯加州在中西部玉米和大豆带中的所有12个州中表现最好。堪萨斯州和内布拉斯加州的结果背后的原因是由于南达科他州所缺乏的更有效和可持续的灌溉系统。在整个SPI期间,仅玉米,南达科他州的相关性强。堪萨斯州在玉米和大豆两个月和三个月平均值上显示出最强的相关性。灌溉和非灌溉玉米(玉米)和大豆水平的降水回归显示产量与降水量成正比。 GWR模型预测,玉米(玉米)和大豆的单产显着优于OLS。当使用OLS回归模型时,观察到的产量与长期平均降水总量之间存在总体趋势,平均产量的84%和63%由非灌溉作物的年平均降水量解释。 GWR技术在预测产量方面的性能明显优于OLS性能。例如,由于玉米(玉米)对水分胁迫的敏感性更高,因此在非灌溉条件下,六月,七月和八月的降雨对玉米(玉米)产量的影响要大于大豆。提供各种时间尺度,使其能够显示干旱状况和严重程度的初始警告信号。在这些时期获得的降水记录上反映了用于不同位置的SPI计算技术。在3个月,6个月和9个月的时间里,NDII6在所有MODIS指数中表现最好,如监测植被湿度和干旱检测的结果所示。 NDII6由于其检测能力而表现最佳。为期9个月的SPI提供了中等时间段内季节间降水模式的指示。;一种新的方法是将研究区域所有县的玉米和大豆单产平均,并将MODIS指数的平均异常与增长进行比较2006-2012年5月到9月之间的旺季。这些年的平均玉米单产与MODIS NDII6的平均值之间存在很强的相关性,R2等于0.62。这意味着NDII6是显示干旱状况和监测植被湿度的最佳指标。大豆平均产量与降水平均值之间的相关性很弱,R2 = 0.16。灌溉和管理系统,杂交技术的改进,生产者管理技术以及其他管理实践对作物单产产生影响。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Al-Shomrany, Adel.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Geographic information science and geodesy.;Remote sensing.;Geography.;Climate change.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号