首页> 外文学位 >Analysis of Biomimetic Block Copolymer Membranes Used for Protein Incorporation
【24h】

Analysis of Biomimetic Block Copolymer Membranes Used for Protein Incorporation

机译:用于蛋白质掺入的仿生嵌段共聚物膜的分析

获取原文
获取原文并翻译 | 示例

摘要

Integral membrane proteins carry out a vast range of transport, catalytic, signaling, and other functions with high reactivity and specificity. These proteins and synthetic mimics thereof are now widely studied for applications relevant to chemical engineers, such as membrane separations, catalysis, and sensors. These proteins' structural stability depends on a network of hydrogen bonds maintained in the amphiphilic environment provided by the cell membrane but disrupted in solution. Thus, to apply these proteins in medicine and industry, we must design and optimize biomimetic membranes -- self assembled amphiphilic structures that serve as matrices to mimic the cell membrane and stabilize integral membrane proteins. Amphiphilic block copolymers recapitulate the self-assembled microstructures formed by lipids and surfactants used to stabilize membrane proteins, but have greater mechanical and chemical stability than these small amphiphiles. Further, membrane properties relevant to protein incorporation, such as thickness and hydrophobicity, can be adjusted by changing the degree of polymerization and monomer identities, making block copolymers an excellent material for biomimetic membrane design.;The goal of my dissertation research was to better understand biomimetic membranes' structure, synthesis, and interactions with proteins. The introduction provides a brief overview of biomimetic membranes, including the block copolymer membrane properties, membrane synthesis, and the interactions between the protein and matrix that can be tailored to optimize protein incorporation and stability. The first chapter describes time-resolved small-angle neutron scattering experiments used to examine the mechanism of membrane self-assembly via detergent dialysis. We show that mixed detergent/polymer micelle fragmentation and fusion control the rate of polymer exchange, and thus the formation of mixed polymer/protein/detergent aggregates that form membranes as detergent is removed. In the second chapter, we use molecular dynamics simulations to examine the nanoscale structure of biomimetic membranes formed from poly(1,2- butadiene)-poly(ethylene oxide) and poly(ethyl ethylene)-poly(ethylene oxide). These simulations allow us to examine membrane thickness and hydration, two properties relevant to protein incorporation. The third chapter examines whether we could synthesize biomimetic membranes from mass-produced Pluronic block copolymers. We show that a mixture of two such polymers, L121 and F127, can assemble into porous vesicles, so that they can be used for separations and as catalytic microreactors. The fourth chapter examines interactions that lead to bacterial membrane fusion by the cationic antimicrobial peptide from Moringa oleifera. This work provides a control for future work to examine the interactions between biomimetic membranes and incorporated proteins using coarse-grained molecular dynamics. Finally, the appendices provide supporting information for each chapter, as well as a report on the design requirements for highpressure reverse osmosis, a potential application for biomimetic membranes.
机译:整体膜蛋白具有高反应性和特异性,可以执行多种运输,催化,信号转导和其他功能。这些蛋白质及其合成模拟物现已广泛研究与化学工程师相关的应用,例如膜分离,催化和传感器。这些蛋白质的结构稳定性取决于在细胞膜提供的两亲环境中维持但在溶液中被破坏的氢键网络。因此,要将这些蛋白质应用于医学和工业,我们必须设计和优化仿生膜-自组装的两亲结构,用作模仿细胞膜并稳定整体膜蛋白的基质。两亲嵌段共聚物概括了由用于稳定膜蛋白的脂质和表面活性剂形成的自组装微结构,但比这些小的两亲物具有更高的机械和化学稳定性。此外,可以通过改变聚合度和单体身份来调节与蛋白质掺入有关的膜特性,例如厚度和疏水性,从而使嵌段共聚物成为用于仿生膜设计的极佳材料。仿生膜的结构,合成以及与蛋白质的相互作用。简介简要介绍了仿生膜,包括嵌段共聚物膜的性质,膜的合成以及蛋白质与基质之间的相互作用,这些相互作用可以定制以优化蛋白质的掺入和稳定性。第一章描述了时间分辨的小角度中子散射实验,该实验用于检查通过去污剂渗析膜的自组装机理。我们表明,混合洗涤剂/聚合物胶束断裂和融合控制了聚合物交换的速率,因此,去除了洗涤剂时形成膜的混合聚合物/蛋白质/洗涤剂聚集体的形成。在第二章中,我们使用分子动力学模拟研究了由聚(1,2-丁二烯)-聚环氧乙烷和聚(乙烯-乙烯)-聚环氧乙烷形成的仿生膜的纳米级结构。这些模拟使我们能够检查膜厚度和水合作用,这是与蛋白质掺入有关的两个特性。第三章探讨了我们是否可以从大量生产的Pluronic嵌段共聚物合成仿生膜。我们表明,两种这样的聚合物L121和F127的混合物可以组装成多孔囊泡,因此它们可以用于分离和用作催化微反应器。第四章探讨了由辣木中的阳离子抗菌肽导致细菌膜融合的相互作用。这项工作为今后使用粗粒度分子动力学检查仿生膜和掺入的蛋白质之间的相互作用提供了控制。最后,附录提供了每章的支持信息,以及有关高压反渗透(一种仿生膜的潜在应用)的设计要求的报告。

著录项

  • 作者

    Schantz, Allen Benjamin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Elementary education.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号