首页> 外文学位 >Analytical and numerical solutions of differential equations arising in fluid flow and heat transfer problems.
【24h】

Analytical and numerical solutions of differential equations arising in fluid flow and heat transfer problems.

机译:在流体流动和传热问题中产生的微分方程的解析和数值解。

获取原文
获取原文并翻译 | 示例

摘要

The solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the thesis) are provided. In the chapters that follow, we apply HAM to a variety of problems to highlight its use and versatility in solving a range of nonlinear problems arising in fluid flow. In chapter 2, a viscous fluid flow problem is considered to illustrate the application of HAM. In chapter 3, we explore the solution of a non-Newtonian fluid flow and provide a proof for the existence of solutions. In addition, chapter 3 sheds light on the versatility and the ease of the application of the Homotopy Analysis Method, and its capability in handling non-linearity (of rational powers). In chapter 4, we apply HAM to the case in which the fluid is flowing along stretching surfaces by taking into the effects of "slip" and suction or injection at the surface. In chapter 5 we apply HAM to a Magneto-hydrodynamic fluid (MHD) flow in two dimensions. Here we allow for the fluid to flow between two plates which are allowed to move together or apart. Also, by considering the effects of suction or injection at the surface, we investigate the effects of changes in the fluid density on the velocity field. Furthermore, the effect of the magnetic field is considered. Chapter 6 deals with MHD fluid flow over a sphere. This problem gave us the first opportunity to apply HAM to a coupled system of nonlinear differential equations. In chapter 7, we study the fluid flow between two infinite stretching disks. Here we solve a fourth order nonlinear ordinary differential equation. In chapter 8, we apply HAM to a nonlinear system of coupled partial differential equations known as the Drinfeld Sokolov equations and bring out the effects of the physical parameters on the traveling wave solutions. Finally, in chapter 9, we present prospects for future work.
机译:非线性常微分方程或偏微分方程的解在流体流动和传热研究中很重要。在本文中,我们应用了同伦分析方法(HAM),并获得了解决流体流动和传热问题的解决方案。在第一章中,简要介绍了同型体和嵌入的历史,并提供了一些示例。提供了同伦同义的应用以及对微分方程(本文中使用的)的求解过程的介绍。在接下来的章节中,我们将HAM应用到各种问题上,以突出其在解决流体流动中出现的一系列非线性问题中的用途和多功能性。在第2章中,考虑了粘性流体流动问题来说明HAM的应用。在第三章中,我们探讨了非牛顿流体流动的解,并提供了解存在性的证明。此外,第3章还介绍了同伦分析方法的通用性和易用性,以及其处理非线性(有理数次幂)的能力。在第4章中,我们通过考虑表面的“滑移”和抽吸或注入效应,将HAM应用于流体沿拉伸表面流动的情况。在第5章中,我们将HAM应用于二维的磁流体流体(MHD)。在这里,我们允许流体在两个板之间流动,这两个板可以一起移动或分开移动。同样,通过考虑表面上的抽吸或注入的影响,我们研究了流体密度变化对速度场的影响。此外,考虑磁场的影响。第6章讨论MHD在球体上的流动。这个问题给了我们第一个将HAM应用于非线性微分方程耦合系统的机会。在第7章中,我们研究了两个无限拉伸盘之间的流体流动。在这里,我们求解一个四阶非线性常微分方程。在第8章中,我们将HAM应用于称为Drinfeld Sokolov方程的耦合偏微分方程的非线性系统,并指出了物理参数对行波解的影响。最后,在第9章中,我们介绍了未来工作的前景。

著录项

  • 作者

    Sweet, Erik.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Applied Mathematics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号