首页> 外文学位 >Chip package interaction (CPI) and its impact on the reliability of flip-chip packages.
【24h】

Chip package interaction (CPI) and its impact on the reliability of flip-chip packages.

机译:芯片封装相互作用(CPI)及其对倒装芯片封装可靠性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Chip-package interaction (CPI) has become a critical reliability issue for flip-chip packaging of Cu/low-k chip with organic substrate. The thermo-mechanical deformation and stress develop inside the package during assembly and subsequent reliability tests due to the mismatch of the coefficients of thermal expansion (CTEs) between the chip and the substrate. The thermal residual stress causes many mechanical reliability issues in the solder joints and the underfill layer between die and substrate, such as solder fatigue failure and underfill delamination. Moreover, the thermo-mechanical deformation of the package can be directly coupled into the Cu/low-k interconnect, inducing large local stresses to drive interfacial crack formation and propagation. The thermo-mechanical reliability risk is further aggravated with the implementation of ultra low-k dielectric for better electrical performance and the mandatory change from Pb-containing solders to Pb-free solders for environmental safety.These CPI-induced reliability issues in flip-chip packaging of Cu/low-k chips are investigated in this dissertation at both chip level and package level using high-resolution Moire interferometry and Finite Element Analysis (FEA). Firstly, the thermo-mechanical deformation in flip-chip packages is analyzed using high-resolution Moire interferometry. The effect of underfill properties on package warpage is studied and followed by a strategy study of proper underfill selection to improve solder fatigue life time and reduce the risk of interfacial delamination in underfill and low-k interconnects under CPI.The chip-package interaction is found to maximize at the die attach step during assembly and becomes most detrimental to low-k chip reliability because of the high thermal load generated by the solder reflow process before underfilling. A three-dimensional (3D) multilevel sub-modeling method combined with modified virtual crack closure (MVCC) technique is employed to investigate the CPI-induced interfacial delamination in Cu/low-k interconnects. It is first focused on the effects of dielectrics and solder materials on low-k interconnect reliability and then extended to the scaling effect where the reduction of the interconnect dimension is accompanied with an increased number of metal levels and the implementation of ultralow-k porous dielectrics. Recent studies on CPI-induced crack propagation in the low-k interconnect and the use of crack-stop structures to improve the chip reliability are also discussed.Finally, 3D integration (3DI) with through silicon vias (TSV) has been proposed as the latest solution to increase the device density without down-scaling. The thermo-mechanical reliability issues facing 3DI are analyzed. Three failure modes are proposed and studied. Design optimization of 3D interconnects to reduce the thermal residual stress and the risks of fracture and delamination are discussed.
机译:对于具有有机衬底的Cu / low-k芯片的倒装芯片封装,芯片封装相互作用(CPI)已成为关键的可靠性问题。由于芯片和基板之间的热膨胀系数(CTE)不匹配,在组装和后续可靠性测试期间,封装内部会产生热机械变形和应力。热残余应力在焊点和管芯与基板之间的底部填充层中引起许多机械可靠性问题,例如焊料疲劳失效和底部填充分层。此外,封装的热机械变形可以直接耦合到Cu / low-k互连中,从而引起较大的局部应力,从而驱动界面裂纹的形成和传播。超低k介电质可实现更好的电气性能,以及从含铅焊料到无铅焊料的强制性更改以确保环境安全,进一步加剧了热机械可靠性风险。这些由CPI引起的倒装芯片可靠性问题本文采用高分辨率莫尔干涉测量法和有限元分析技术,在芯片级和封装级对Cu / low-k芯片的封装进行了研究。首先,使用高分辨率莫尔干涉仪分析了倒装芯片封装中的热机械变形。研究了底部填充性能对封装翘曲的影响,然后进行了策略研究,以选择适当的底部填充以提高焊料疲劳寿命并降低CPI下底部填充和低k互连中界面分层的风险。由于在底部填充之前焊料回流工艺会产生很高的热负荷,因此在组装过程中在芯片贴装步骤中最大程度地发挥最大作用,并且这对低k芯片可靠性最不利。一种三维(3D)多级子建模方法,结合改进的虚拟裂纹闭合(MVCC)技术,用于研究CPI诱导的Cu / low-k互连中的界面分层。它首先关注电介质和焊料材料对低k互连可靠性的影响,然后扩展到缩放效应,其中互连尺寸的减小伴随着金属水平的增加以及超低k多孔电介质的实现。还讨论了有关CPI引起的低k互连中裂纹扩展以及使用裂纹停止结构提高芯片可靠性的最新研究。最后,提出了通过硅通孔(TSV)的3D集成(3DI)。最新的解决方案,可在不缩小尺寸的情况下提高设备密度。分析了3DI面临的热机械可靠性问题。提出并研究了三种失效模式。讨论了3D互连的设计优化,以减少热残余应力以及破裂和分层的风险。

著录项

  • 作者

    Zhang, Xuefeng.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Packaging.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号