首页> 外文学位 >Direct extrusion process analysis with proposed numerical modeling improvements - product quality, process parameters, and microstructure prediction.
【24h】

Direct extrusion process analysis with proposed numerical modeling improvements - product quality, process parameters, and microstructure prediction.

机译:通过建议的数值建模改进对直接挤压工艺进行分析-产品质量,工艺参数和微观结构预测。

获取原文
获取原文并翻译 | 示例

摘要

A numerical modeling and simulation analysis was performed on the hot-direct extrusion process with the finite element modeling (FEM) software package, DEFORM(TM) 3-D for three case studies. The research demonstrated that a commercially available, industry-accepted numerical simulation software package can predict the material response and microstructure development with simple simulated state variables (i.e. strain, strain rate, and temperature) and easily measured initial material characteristics (e.g. grain diameter). The predicted state variables provided insight into sources for limited extrudate quality, aided in processing improvements, and were the primary variables used to predict material response. The analysis began with studying the influence of tool misalignment and the degree of billet upset on extrudate dimensional quality, measured in terms of tube eccentricity, for a copper tube case study. Under ideal upset and tool alignment conditions, the simulated eccentricity was minimized. If the mandrel had a misalignment that was within tolerance, the eccentricity initially was minor in comparison to the eccentricity produced toward the end of extrusion. Consequently, through the use of DEFORM(TM) 3-D the extrusion mechanics were understood and sources for tube eccentricity were identified. In the second case study, a flow stress model was developed as a function of the state variables for an as-cast homogenized magnesium alloy. The modeled flow stress curve reasonably agreed with experimental compression flow stress data. The model was then implemented into DEFORM(TM) 3-D to utilize the simulated state variables to examine the extrusion of an automobile structural component. It was concluded that once the initial material characteristics are accounted for in the flow stress model it will more accurately and efficiently predict the flow stress response for the actual material being considered than a generic experimental flow stress-based material library entry in DEFORM(TM) 3-D. The third case study assessed an aluminum alloy's microstructure response to hot-direct extrusion processing conditions. The DEFORM(TM) 3-D simulated state variables were incorporated into a dynamic recrystallization (DRX) model that with reasonable accuracy predicted the surface grain structure evolution when compared to experimental results. By knowing the grain structure response the surface physical properties of the extrudate can be deduced.
机译:针对三个案例研究,使用有限元建模(FEM)软件包DEFORM™3-D在热直接挤压过程中进行了数值建模和仿真分析。研究表明,商业上可接受的,商业上可接受的数值模拟软件包可以通过简单的模拟状态变量(即应变,应变率和温度)和易于测量的初始材料特性(例如晶粒直径)来预测材料响应和微观结构的发展。预测的状态变量提供了对有限挤出物质量来源的洞察力,有助于加工改进,并且是用于预测材料响应的主要变量。对于铜管案例研究,分析开始于研究工具未对准和坯料up粗程度对挤出物尺寸质量的影响(以管偏心度衡量)。在理想的set锻和工具对准条件下,模拟的偏心距被最小化。如果心轴的偏差在公差范围内,则与在挤出结束时产生的偏心率相比,最初的偏心率较小。因此,通过使用DEFORM TM 3-D可以理解挤压机理,并可以确定管偏心的来源。在第二个案例研究中,根据铸态均质镁合金的状态变量开发了流动应力模型。建模的流应力曲线与实验压缩流应力数据合理地吻合。然后将模型实施到DEFORM TM 3-D中,以利用模拟的状态变量来检查汽车结构部件的挤压。得出的结论是,一旦在流动应力模型中考虑了初始材料的特性,它将比DEFORM(TM)中基于实验的基于流动应力的通用材料库条目更准确,有效地预测所考虑的实际材料的流动应力响应。 3D。第三个案例研究评估了铝合金对热直接挤压加工条件的响应。将DEFORMTM 3-D模拟状态变量合并到动态重结晶(DRX)模型中,该模型以合理的精度预测了与实验结果相比表面晶粒结构的演变。通过了解晶粒结构响应,可以推断出挤出物的表面物理性质。

著录项

  • 作者

    De Pari, Luigi, Jr.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Mechanical.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号