首页> 外文学位 >Real-time visual mosaicking and navigation on the seafloor.
【24h】

Real-time visual mosaicking and navigation on the seafloor.

机译:在海底实时视觉镶嵌和导航。

获取原文
获取原文并翻译 | 示例

摘要

Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters.;However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans.;This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead-reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment.;The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps.;The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities.;The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.
机译:远程机器人探索具有巨大的潜力,可以获取有关人类很难进入的极端环境的知识。机器人探险家已被送往其他太阳系尸体,并在这个星球上进入了洞穴和火山等人迹罕至的地区。实际上,地球上最大的未开发陆地区域隐藏在无气的寒冷和海洋深处的强烈压力下。水对电磁辐射的高吸收进一步阻碍了海洋的勘探,电磁辐射既抑制了水面的遥感,又限制了与海底的通讯。因此,地球的海洋为发展远程勘探能力提供了一个有吸引力的目标。结果,现在有无数的机器人车辆例行地在这种环境下进行测量,从在地表上系绳的远程操纵的车辆到测量中水域的鱼雷形自主水下航行器;然而,这些车辆相对于航行的能力有限。他们的环境。这限制了他们在不使用外部导航辅助工具的情况下精确返回站点的能力,以及在水和海底自主操纵附近物体并与之交互的能力。在全自动水下航行器上实现相对于环境的定位将极大地扩展其动力和效用,以便在地球水域最远的地方(甚至在冰下和地下)以及最终在诸如欧罗巴的海洋。本文提出了一种可操作的野外作业系统,用于在未开发的海底区域进行水下机器人车辆的视觉导航。该系统不依赖于外部传感系统,仅使用车辆上的仪器即可。在探索某个区域时,会使用相机捕获图像,并实时创建海底的合成视图或可视化马赛克。图像的左右视觉配准与死锁的导航信息结合在一个框架中,允许创建和更新局部一致的大型镶嵌图。这些镶嵌图用作地图,使车辆可以相对于环境中的点进行导航和定位。;该系统以多种方式实现实时性能。首先,尽可能使用直接感测运动参数来代替从视觉数据中提取运动参数。其次,选择轨迹以实现对侧向链接的分层搜索,这会限制执行搜索的数量而不会牺牲鲁棒性。最后,将地图估算公式化为稀疏的线性信息过滤器,从而可以快速更新大型地图。本文工作实现的视觉导航代表了远程操作车辆的新功能,以及新一代汽车的启用功能。自动驾驶汽车,可探索遥远,未知且非结构化的水下环境并与之互动。实时镶嵌图可用于当前的系留车辆上,以创建飞行员辅助设备,并向车辆用户提供对本地环境和车辆在其中的位置的态势感知。对于自动驾驶汽车,视觉导航系统无需外部导航系统即可实现精确的相对于环境的定位和地图绘制,从而为不断扩展的自动驾驶探索能力开辟了道路。该系统的实用性已在具有科学价值的现场进行了演示使用蒙特利湾水族馆研究所运营的ROV Ventana和Tiburon。使用该系统对加州蒙特利湾及其周围的许多地点进行了拼接,最终完成了对梅肯号航空母舰沉船地点的完整成像,在其中仅使用传感器系统进行导航时就生成了包含数千张图像的实时视觉影像。登上车辆。

著录项

  • 作者

    Richmond, Kristof.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Aerospace.;Engineering Marine and Ocean.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;海洋工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号