首页> 外文学位 >Electrokinetic transport, trapping, and sensing in integrated micro- and nanofluidic devices.
【24h】

Electrokinetic transport, trapping, and sensing in integrated micro- and nanofluidic devices.

机译:集成的微流体和纳米流体设备中的电动传输,捕获和传感。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidics is rapidly becoming a mature field, and improved fabrication methods now routinely produce sub-micrometer features. As device dimensions shrink, physical phenomena that are negligible at larger length scales become more important, and by integrating nanofluidic elements with microchannels, new analytical techniques can be developed based on the unique behavior of matter at the nanoscale. This work addresses the fabrication, operation, and application of in-plane nanochannels and out-of-plane nanopores in lab-on-a-chip devices.;In planar nanofluidic devices, we demonstrate a method to produce micro- and nanoscale features simultaneously with a single UV exposure step and evaluate flow control and sample dispensing with nanofluidic cross structures. Modification of the pinched injection method makes it applicable to variable-volume, attoliter-scale injections, including the smallest volume electrokinetically-controlled injections to date.;As an alternative approach, track-etch nanopore membranes are explored as out-of-plane nanofluidic components. The random distribution of pores in these membranes is overcome by lithographic and microchannel-based methods to isolate and address specific pores. Microfluidic isolation improves mass transport to the pore(s), provides easy coupling of electrical potentials, and facilitates additional sample processing steps up- and downstream.;These integrated microchannel-nanopore devices are used for diffusion-based dispensing, electrokinetic trapping, and resistive pulse sensing. In a high pore density device, diffusion-based dispensing establishes a stable chemical gradient for bacterial chemotaxis assays. For lower pore density devices, the nanopores are the most resistive components in the fluidic circuit, and application of an electric potential produces localized regions of high electric field strength and field gradient. These high field regions are applied to electrokinetic trapping of particles and cells in multiple-pore devices and to single particle detection by resistive pulse sensing in devices with a single isolated pore.;To better understand factors influencing ion current in single nanoscale conduits, we systematically examine ion current rectification as a function of pore diameter, ionic strength, and pH to improve understanding of ion current through nanopores and to characterize preferred operating parameters for sensing applications. These results are applied to detection of virus capsids, and future work is proposed to investigate capsid assembly.
机译:微流体技术正在迅速成为一个成熟的领域,现在改进的制造方法通常可以产生亚微米级的特征。随着设备尺寸的缩小,在更大的长度范围内可忽略的物理现象变得越来越重要,并且通过将纳米流体元素与微通道集成在一起,可以基于纳米级物质的独特行为开发新的分析技术。这项工作解决了芯片实验室设备中平面内纳米通道和平面外纳米孔的制造,操作和应用问题。在平面纳米流体设备中,我们演示了一种同时产生微米级和纳米级特征的方法只需一个紫外线曝光步骤,就可以通过纳米流体交叉结构评估流量控制和样品分配。 ched缩进样方法的改进使其适用于可变体积,原子升规模的进样,包括迄今为止最小体积的电动控制进样。作为一种替代方法,轨迹蚀刻纳米孔膜被探索为面外纳米流体组件。通过平版印刷术和基于微通道的方法来隔离和处理特定的孔,可以克服这些膜中孔的随机分布。微流体隔离改善了向孔的质量传输,提供了容易的电势耦合,并促进了上下游的附加样品处理步骤;这些集成的微通道纳米孔装置用于基于扩散的分配,电动捕集和电阻式脉冲感应。在高孔密度设备中,基于扩散的分配可为细菌趋化性测定建立稳定的化学梯度。对于较低孔密度的设备,纳米孔是流体回路中电阻最大的组件,施加电势会产生高电场强度和场梯度的局部区域。这些高场区域可用于电动捕获多孔设备中的颗粒和细胞,以及通过电阻脉冲传感在具有单个隔离孔的设​​备中检测单个颗粒。;为了更好地了解影响单个纳米级导管中离子电流的因素,我们系统地检查离子电流整流与孔径,离子强度和pH的关系,以增进对通过纳米孔的离子电流的了解,并表征传感应用的优选操作参数。这些结果被应用于病毒衣壳的检测,并提出了进一步的工作来研究衣壳装配。

著录项

  • 作者

    Kovarik, Michelle L.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Chemistry Analytical.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号