首页> 外文学位 >Learning with Markov logic networks: Transfer learning, structure learning, and an application to web query disambiguation.
【24h】

Learning with Markov logic networks: Transfer learning, structure learning, and an application to web query disambiguation.

机译:使用Markov逻辑网络进行学习:转移学习,结构学习以及用于Web查询消歧的应用程序。

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, machine learning algorithms assume that training data is provided as a set of independent instances, each of which can be described as a feature vector. In contrast, many domains of interest are inherently multi-relational, consisting of entities connected by a rich set of relations. For example, the participants in a social network are linked by friendships, collaborations, and shared interests. Likewise, the users of a search engine are related by searches for similar items and clicks to shared sites. The ability to model and reason about such relations is essential not only because better predictive accuracy is achieved by exploiting this additional information, but also because frequently the goal is to predict whether a set of entities are related in a particular way. This thesis falls within the area of Statistical Relational Learning (SRL), which combines ideas from two traditions within artificial intelligence, first-order logic and probabilistic graphical models, to address the challenge of learning from multi-relational data. We build on one particular SRL model, Markov logic networks (MLNs), which consist of a set of weighted first-order-logic formulae and provide a principled way of defining a probability distribution over possible worlds. We develop algorithms for learning of MLN structure both from scratch and by transferring a previously learned model, as well as an application of MLNs to the problem of Web query disambiguation. The ideas we present are unified by two main themes: the need to deal with limited training data and the use of bottom-up learning techniques.;Structure learning, the task of automatically acquiring a set of dependencies among the relations in the domain, is a central problem in SRL. We introduce BUSL, an algorithm for learning MLN structure from scratch that proceeds in a more bottom-up fashion, breaking away from the tradition of top-down learning typical in SRL. Our approach first constructs a novel data structure called a Markov network template that is used to restrict the search space for clauses. Our experiments in three relational domains demonstrate that BUSL dramatically reduces the search space for clauses and attains a significantly higher accuracy than a structure learner that follows a top-down approach.;Accurate and efficient structure learning can also be achieved by transferring a model obtained in a source domain related to the current target domain of interest. We view transfer as a revision task and present an algorithm that diagnoses a source MLN to determine which of its parts transfer directly to the target domain and which need to be updated. This analysis focuses the search for revisions on the incorrect portions of the source structure, thus speeding up learning. Transfer learning is particularly important when target-domain data is limited, such as when data on only a few individuals is available from domains with hundreds of entities connected by a variety of relations. We also address this challenging case and develop a general transfer learning approach that makes effective use of such limited target data in several social network domains.;Finally, we develop an application of MLNs to the problem of Web query disambiguation in a more privacy-aware setting where the only information available about a user is that captured in a short search session of 5--6 previous queries on average. This setting contrasts with previous work that typically assumes the availability of long user-specific search histories. To compensate for the scarcity of user-specific information, our approach exploits the relations between users, search terms, and URLs. We demonstrate the effectiveness of our approach in the presence of noise and show that it outperforms several natural baselines on a large data set collected from the MSN search engine.
机译:传统上,机器学习算法假定训练数据是作为一组独立的实例提供的,每个实例都可以描述为特征向量。相反,许多感兴趣的领域本质上是多关系的,由由丰富的关系集连接的实体组成。例如,社交网络中的参与者通过友谊,协作和共同兴趣而链接在一起。同样,搜索引擎的用户通过搜索相似的项目并单击共享站​​点来进行关联。对这种关系进行建模和推理的能力至关重要,这不仅是因为通过利用这些附加信息可以获得更好的预测准确性,而且因为目标常常是预测一组实体是否以特定方式关联。本文属于统计关系学习(SRL)领域,该领域结合了人工智能中两种传统的思想,即一阶逻辑和概率图形模型,以应对从多关系数据中学习的挑战。我们建立在一个特定的SRL模型上,即马尔可夫逻辑网络(MLN),它由一组加权的一阶逻辑公式组成,并提供了一种定义可能世界上概率分布的原则方法。我们开发了用于从头开始并通过转移先前学习的模型来学习MLN结构的算法,以及将MLN应用于网络查询消除歧义的问题。我们提出的思想由两个主要主题统一:处理有限训练数据的需要和自下而上的学习技术的使用;结构学习是自动获取域中关系之间的一组依赖关系的任务,它是SRL中的一个中心问题。我们介绍了BUSL,这是一种用于从头开始学习MLN结构的算法,该算法以自下而上的方式进行,从而打破了SRL中典型的自顶向下学习的传统。我们的方法首先构造了一种称为Markov网络模板的新颖数据结构,该数据结构用于限制子句的搜索空间。我们在三个关系域中进行的实验表明,与采用自顶向下方法的结构学习器相比,BUSL大大减少了子句的搜索空间,并且获得了显着更高的准确性;还可以通过传递在模型中获得的模型来实现准确有效的结构学习。与当前感兴趣的目标域相关的源域。我们将转移视为修订任务,并提出了一种诊断源MLN的算法,以确定其哪些部分直接转移到目标域以及哪些部分需要更新。该分析将对修订的搜索集中在源代码结构的不正确部分上,从而加快了学习速度。当目标域数据有限时(例如,只有几个人的数据可从具有通过各种关系连接的数百个实体的域中获得)时,转移学习尤为重要。我们还将解决这一具有挑战性的案例,并开发一种通用的转移学习方法,该方法可以在多个社交网络域中有效利用此类有限的目标数据。最后,我们以更加隐私的方式开发了MLN的应用,以解决Web查询歧义问题设置,其中唯一有关用户的信息是在平均5--6个先前查询的简短搜索会话中捕获的信息。此设置与以前的工作形成对比,以前的工作通常假定可以使用较长的特定于用户的搜索历史记录。为了弥补用户特定信息的不足,我们的方法利用了用户,搜索词和URL之间的关系。我们证明了在存在噪声的情况下我们的方法的有效性,并表明在从MSN搜索引擎收集的大型数据集上,它的性能优于几个自然基准。

著录项

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号