首页> 外文学位 >Controlling nonspecific adsorption of proteins at bio-interfaces for biosensor and biomedical applications.
【24h】

Controlling nonspecific adsorption of proteins at bio-interfaces for biosensor and biomedical applications.

机译:控制生物传感器和生物医学应用在生物界面上蛋白质的非特异性吸附。

获取原文
获取原文并翻译 | 示例

摘要

Partitioning of poly(ethyleneglycol) (PEG) molecules in 2-D and 3-D systems is presented as a self-assembly approach for controlling non-specific adsorption of proteins at interfaces.;Lateral restructuring of multi-component Langmuir monolayers to accommodate adsorbing proteins was investigated as a model 2-D system. Ferritin adsorption to monolayers containing cationic, nonionic, and PEG bearing phospholipids induced protein sized binding pockets surrounded by PEG rich regions. The number, size, and distribution of protein imprint sites were controlled by the molar ratios, miscibility, and lateral mobility of the lipids.;The influence of PEG chain length on the ternary monolayer restructuring and protein distribution was also investigated using DSPE-PEGx (x= 7, 16, 22). Monolayer miscibility analysis demonstrated that longer PEG chains diminished the condensed phase formation for a fixed ratio of lipids. Thus, incorporation of longer PEG chains, intended to diminish protein adsorption outside of the imprint sites of cationic/non-ionic lipids, leads to dramatic changes in monolayer phase behavior and protein distribution in this 2-D system.;The assembly of PEG-amphiphiles at elastomer surfaces and subsequent protein adsorption was investigated as a model 3-D system. Polydimethylsiloxane (PDMS) substrates were modified with block copolymers comprised of PEG and PDMS segments by two methods: (1) the block copolymer was mixed with PDMS during polymerization; (2) the block copolymer diffused into solvent swollen PDMS monoliths. Hydrophilic surfaces resulted for both approaches that, for 600 D block copolymer, exhibited up to 85% reduction in fibrinogen adsorption as compared to native PDMS. Higher MW block copolymers (up to 3000 D) resulted in less hydrophilic surfaces and greater protein adsorption, presumably due to diffusion limitations of copolymer in the PDMS monolith. All modified PDMS surfaces were dynamic and restructured when cycled between air and water. PDMS transparency also decreased with increase in block copolymer concentration for both methods, limiting this modification protocol for applications requiring high polymer transparency.;The 2-D system presents a bottom-up approach, where adsorbing protein constructs the binding site, while the 3-D system presents a top down approach, where protein-binding elements may be introduced into the PEG-bearing polymer for fabrication of surfaces with controlled protein adsorption.
机译:提出了在2-D和3-D系统中对聚(乙二醇)分子进行分区的自组装方法,以控制界面上蛋白质的非特异性吸附;多组分Langmuir单层的侧向重组以适应吸附研究了蛋白质作为2D模型系统。铁蛋白吸附到含有阳离子,非离子和PEG磷脂的单分子层上,诱导了被PEG富集区域包围的蛋白质大小的结合口袋。蛋白质印迹位点的数量,大小和分布受脂质的摩尔比,可混溶性和侧向迁移率控制。;还使用DSPE-PEGx研究了PEG链长对三元单层重构和蛋白质分布的影响( x = 7、16、22)。单层混溶性分析表明,对于固定比例的脂质,更长的PEG链减少了凝结相的形成。因此,更长的PEG链的引入旨在减少蛋白质在阳离子/非离子脂质的印迹位点之外的吸附,导致此2-D系统中单层相行为和蛋白质分布发生巨大变化。作为模型3-D系统研究了弹性体表面的两亲物和随后的蛋白质吸附。聚二甲基硅氧烷(PDMS)基材通过两种方法用由PEG和PDMS链段组成的嵌段共聚物改性:(1)在聚合过程中将嵌段共聚物与PDMS混合; (2)嵌段共聚物扩散到溶剂溶胀的PDMS整料中。两种方法均具有亲水性表面,与天然PDMS相比,对于600 D嵌段共聚物,其纤维蛋白原吸附降低了多达85%。较高的MW嵌段共聚物(最大3000 D)导致较少的亲水表面和较大的蛋白质吸附,这可能是由于PDMS整体中共聚物的扩散限制所致。当在空气和水之间循环时,所有修改过的PDMS表面都是动态的并经过重组。两种方法的PDMS透明度也随着嵌段共聚物浓度的增加而降低,从而限制了该修饰方案用于要求高聚合物透明度的应用。2-D系统提供了一种自下而上的方法,其中吸附蛋白构成了结合位点,而3- D系统提出了一种自上而下的方法,其中可以将蛋白质结合元素引入带有PEG的聚合物中,以制造具有受控蛋白质吸附作用的表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号