首页> 外文学位 >Applications of computational fluid dynamics to planetary atmospheres.
【24h】

Applications of computational fluid dynamics to planetary atmospheres.

机译:计算流体动力学在行星大气中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Computational Fluid Dynamics (CFD) has been applied to many areas. As one of the most important fluids, the atmosphere is closely related to people's life. Studying the atmospheres on other planets can help people understand the Earth's atmosphere and the climate and weather phenomena in it. Because of the complexity of a planetary atmosphere and the limitation of observations, applying CFD to the study of planetary atmospheres is becoming more and more popular. This kind of CFD simulations will also help people design the mission to the extra planets.;In this dissertation, through CFD simulations, we studied the three important phenomena in a planetary atmosphere: vortices, zonal winds and clouds. The CFD model Explicit Planetary Isentropic Coordinate (EPIC) Global Circulation Model (GCM) was applied in these simulations. Dynamic simulations of the Great Dark Spots (GDS) on Neptune and the Uranian Dark Spot (UDS) were performed. In this work, constructed zonal wind profiles and vertical pressure-temperature profile were constructed based on the observational data. Then, we imported a two-flux radiation model with two-band absorption coefficients into EPIC to study the seasonal changes on Uranus. Finally, a methane cloud model was imported to study the cloud formation around a great vortex and its effects on the vortex.;In the process of the dynamic simulations of Neptune's atmosphere and its vortices in it, the parameters about the background and the vortex itself were investigated to try to fit the observational results. We found that a small gradient of background absolute vorticity near a GDS is needed to sustain a great vortex in the atmosphere. The drift rate and oscillations of a GDS are closely related to the zonal wind profile and the vortex characteristics. The dynamic simulations of the UDS suggested why it is hard to observe a great vortex on Uranus and indicated that a region of near constant absolute vorticity appearing at ∼28°N in the zonal wind profile is possibly recommended to the sustainability of the UDS. With the two-flux radiation model, we simulated the seasonal change of the zonal wind profile on Uranus. The observational temperature distribution and global convection were also achieved. With the methane cloud model, we simulated the poleward cloud above great vortices on both Neptune and Uranus. The results suggested that the cloud model can help the GDS on Neptune to keep its shape and moderate its oscillations. Similarly, it can also help the UDS to keep its form.;KEYWORDS: Computational Fluid Dynamics, planetary atmosphere, great vortex, radiation, cloud
机译:计算流体动力学(CFD)已应用于许多领域。大气作为最重要的流体之一,与人们的生活息息相关。研究其他行星上的大气层可以帮助人们了解地球的大气层以及其中的气候和天气现象。由于行星大气的复杂性和观测的局限性,将CFD应用于行星大气的研究正变得越来越流行。这种CFD模拟也将帮助人们设计出额外的行星。本论文通过CFD模拟,研究了行星大气中的三个重要现象:涡旋,纬向风和云。在这些模拟中使用了CFD模型显式行星等向坐标(EPIC)全球环流模型(GCM)。对海王星上的大黑斑(GDS)和乌拉尼黑斑(UDS)进行了动态模拟。在这项工作中,根据观测数据构造了构造的纬向风廓线和垂直压力-温度廓线。然后,我们将具有两波段吸收系数的两通辐射模型导入EPIC,以研究天王星的季节变化。最后,引入甲烷云模型,研究大涡周围的云形成及其对涡的影响。在海王星大气及其涡的动态模拟过程中,背景和涡本身的参数进行调查以尝试拟合观测结果。我们发现,在GDS附近需要一个小的背景绝对涡度梯度来维持大气中的大涡度。 GDS的漂移率和振荡与纬向风廓线和涡旋特性密切相关。 UDS的动态模拟表明了为什么很难在天王星上观察到巨大的旋涡,并指出在UDS的可持续性方面,可能建议在纬向风廓线中约28°N出现接近恒定绝对涡旋的区域。利用两通量辐射模型,我们模拟了天王星上纬向风廓线的季节性变化。还实现了观测温度分布和整体对流。利用甲烷云模型,我们在海王星和天王星上模拟了大涡上方的极地云。结果表明,云模型可以帮助海王星上的GDS保持其形状并缓和其振荡。同样,它也可以帮助UDS保持其形式。关键词:计算流体动力学,行星大气,大涡,辐射,云

著录项

  • 作者

    Deng, Xiaolong.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Mechanical.;Physics Atmospheric Science.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号