首页> 外文学位 >A transformative tool for minimally invasive procedures: Design, modeling and real-time control of a polycrystalline shape memory alloy actuated robotic catheter.
【24h】

A transformative tool for minimally invasive procedures: Design, modeling and real-time control of a polycrystalline shape memory alloy actuated robotic catheter.

机译:一种用于微创程序的变革性工具:多晶形状记忆合金致动机器人导管的设计,建模和实时控制。

获取原文
获取原文并翻译 | 示例

摘要

Cardiac catheterization is rapidly transforming the diagnosis and treatment of cardiovascular disease. However, the use of catheters is limited to procedures where the target anatomy can be easily accessed via natural vasculature. Robotically controlled catheters have the potential to provide greater access and more precise interaction with internal anatomies. This dissertation presents the development of a shape memory alloy (SMA) actuated robotic catheter: from electromechanical design to the development of novel modeling and control approaches.;The robotic catheter is fabricated using conventional manufacturing and rapid prototyping. To analyze the transient characteristics of the catheter, a dynamic model is developed. Its bending mechanics are derived using a circular arc model and are experimentally validated. The effects of outer sleeve thickness on heat transfer and transient response characteristics are studied. SMA actuation is described using the Seelecke-Muller-Achenbach model for single-crystal SMA with experimentally determined parameters. Joule heating is used to generate tip deflections, which are measured in real-time using a dual-camera imaging system. The dynamic characteristics of this active catheter system are simulated and validated experimentally.;The direct extension of the Seelecke-Muller-Achenbach model to a catheter with multiple SMA tendons proves difficult because of the computational cost and inherent inaccuracies of single-crystal modeling assumptions. Moreover, the requisite variable-step solvers are not suitable to real-time control. To facilitate more accurate modeling and effective real-time control of an SMA catheter with multiple tendons, a new modeling technique based on Hysteretic Recurrent Neural Networks (HRNNs) is proposed. Its efficacy is demonstrated experimentally for two- and three-phase hysteretic systems. The HRNN is shown to accurately capture the polycrystalline stress-strain characteristics of SMA tendons at different temperatures.;A robotic catheter system consisting of four SMA tendons is then decoupled into two planar bending systems, each containing a pair of antagonistic SMA tendons. An HRNN model is developed directly from experimental output measurements, and is used to develop a feed-forward controller.
机译:心脏导管插入术正在迅速改变心血管疾病的诊断和治疗。但是,导管的使用仅限于可以通过自然脉管系统轻松进入目标解剖结构的手术。机器人控制的导管具有提供更大的通道和与内部解剖结构更精确的相互作用的潜力。本文介绍了形状记忆合金(SMA)驱动的机器人导管的开发:从机电设计到新型建模和控制方法的开发。该机器人导管采用常规制造和快速原型制造。为了分析导管的瞬态特性,建立了动态​​模型。它的弯曲力学是使用圆弧模型得出的,并经过实验验证。研究了外套管厚度对传热和瞬态响应特性的影响。使用Seelecke-Muller-Achenbach模型针对单晶SMA使用实验确定的参数来描述SMA驱动。焦耳加热用于产生尖端变形,使用双摄像头成像系统实时测量尖端变形。对该主动导管系统的动态特性进行了仿真和实验验证。;由于计算成本高以及单晶建模假设的固有误差,将Seelecke-Muller-Achenbach模型直接扩展到具有多个SMA腱的导管非常困难。而且,必需的可变步长求解器不适用于实时控制。为了促进具有多个肌腱的SMA导管的更精确建模和有效实时控制,提出了一种基于迟滞递归神经网络(HRNN)的新建模技术。实验证明了其对两相和三相磁滞系统的有效性。显示HRNN可以精确地捕获不同温度下SMA肌腱的多晶应力应变特性。然后,将由四个SMA肌腱组成的机器人导管系统解耦为两个平面弯曲系统,每个系统均包含一对拮抗SMA肌腱。 HRNN模型是直接根据实验输出测量结果开发的,用于开发前馈控制器。

著录项

  • 作者

    Veeramani, Arun Shankar.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号