首页> 外文学位 >Anodic aluminum oxide and carbon nanotube-based nanostructured materials for hydrogen sensors.
【24h】

Anodic aluminum oxide and carbon nanotube-based nanostructured materials for hydrogen sensors.

机译:用于氢传感器的阳极氧化铝和碳纳米管基纳米结构材料。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is envisioned as one of the most attractive and sustainable energy systems to power future generations. Because of their particular surface characteristics and distinctive physical properties nanoscale materials are promising candidates for the development of high performance hydrogen sensors, essential components to ensure the safe operation of the infrastructure and to facilitate the public acceptance of hydrogen technologies.;This investigation is dedicated to the development of anodic aluminum oxide (AAO) and double wall carbon nanotube (DWNT)-based nanostructured materials for high performance hydrogen sensors. It addresses the controlled synthesis of nanostructures with defined geometries and sizes, study of physical and electronic properties, and the integration into functional hydrogen sensing devices.;Compared to current palladium thin film sensors and nanostructured devices the AAO-based nanostructure exhibits faster response times without compromising sensitivity and selectivity. Performance of developed DWNT-based nanostructures is comparable to that for high performance hydrogen sensors fabricated with SWNTs, but with potential improvement in mechanical and thermal resistance associated to the double layer structure.
机译:氢被认为是为子孙后代提供动力的最具吸引力和可持续性的能源系统之一。由于其特殊的表面特性和独特的物理特性,纳米材料是开发高性能氢传感器的有希望的候选者,氢传感器是确保基础设施安全运行并促进公众对氢技术的接受的基本组件。高性能氧化铝传感器用​​阳极氧化铝(AAO)和双壁碳纳米管(DWNT)基纳米结构材料的开发。它解决了具有确定的几何形状和尺寸的纳米结构的受控合成,物理和电子性质的研究以及与功能性氢感测器件的集成。与当前的钯薄膜传感器和纳米结构的器件相比,基于AAO的纳米结构显示出更快的响应时间而没有损害灵敏度和选择性。已开发的基于DWNT的纳米结构的性能可与采用SWNT制造的高性能氢传感器的性能相媲美,但与双层结构相关的机械和热阻具有潜在的改善。

著录项

  • 作者

    Rumiche, Francisco.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Chemistry Inorganic.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号