首页> 外文学位 >High frequency high amplitude magnetic field driving system for magnetostrictive actuators.
【24h】

High frequency high amplitude magnetic field driving system for magnetostrictive actuators.

机译:用于磁致伸缩致动器的高频高振幅磁场驱动系统。

获取原文
获取原文并翻译 | 示例

摘要

Magnetostrictive actuators are the focus of many research and development activities, especially for high frequency applications. A key component of these actuators is the magnetic field driving system. In this research work, magnetic field drivers for magnetostrictive actuators are studied and a detailed methodology to build a low cost, power efficient, High Frequency High Amplitude (HFHA) magnetic field driver system is developed.;The detailed study of magnetic field drivers suitable for magnetostrictive actuators revealed that the design of the driver must be done at a system level. Changes in geometry of the magnetostrictive material and the mechanical structure have significant effect on the efficiency of the driver. For the purposes of the research work, the magnetostrictive material was limited to two forms, viz. bulk rod and thin film.;First, a suitable mechanical structure must be selected based on the amplitude and frequency requirements. For purposes of this work, a cantilever beam was chosen so that large amplitude can be achieved with proper sizing. Simple vibration analysis was used to size the beam so that the designed actuator frequency is within the third bending mode. Second, the magnetostrictive actuator was designed so that a mechanical bias and a magnetic bias can be applied to maximize the output of the actuator. The driver design primarily consists of a coil, a least resistant magnetic return path, a power source, and a command signal generator. Power drawn by the magnetic field driver increases with the frequency of operation due to increases in its inductance, skin effect losses, and eddy current losses. The magnetostrictive material with its low resistivity, when used as a core, therefore requires system level approach in designing the driver.;Methodology developed to drive a magnetostrictive actuator includes determining optimal values of diameter of the magnetic wire, number of turns, length of the coil, and overall geometry. This methodology also accounts for the skin effect losses in the driving coil wire and the eddy current losses in magnetostrictive material. The power consumption is further reduced by creating an electrical resonance at the desired operating frequency by adding a capacitor in series with the driver. The least resistance magnetic return path is ensured by using a high magnetic permeability material and custom geometry permanent magnets.;In this research work, response of the system comprising a well known model of cantilever beam with mirror and 1-d model of actuator with nonlinear magnetostrictive rod is measured empirically. The developed methodology is validated experimentally using a custom fabricated magnetostrictive mirror deflector for rapidly tunable laser system. The fabricated mirror deflector is capable of producing a deflection of 6.1 mrad at 5.28 kHz with a power consumption of 0.8 W and a deflection of 3.8 mrad at 10.8 kHz with 0.65 W. The electrical resonance circuits used have further reduced the power consumption by as much as 32%. The methodology is extended to MEMS thin film mirror deflectors.;The work reported here is the first step towards building a comprehensive model of High Frequency High Amplitude driver for Magnetostrictive actuators. This needs more work to include the true nonlinear behavior of the magnetostrictive rod and the integrated system.
机译:磁致伸缩执行器是许多研究和开发活动的重点,特别是在高频应用中。这些致动器的关键部件是磁场驱动系统。在这项研究工作中,研究了用于磁致伸缩执行器的磁场驱动器,并开发了一种构建低成本,高功率效率的高频高振幅(HFHA)磁场驱动器系统的详细方法。磁致伸缩执行器表明,驱动器的设计必须在系统级别进行。磁致伸缩材料的几何形状和机械结构的变化对驱动器的效率有重大影响。出于研究工作的目的,磁致伸缩材料仅限于两种形式。首先,必须根据振幅和频率要求选择合适的机械结构。出于这项工作的目的,选择了一个悬臂梁,以便在适当调整尺寸的情况下可以实现大振幅。简单的振动分析用于确定梁的尺寸,以使设计的执行器频率在第三弯曲模式内。其次,设计磁致伸缩致动器,以便可以施加机械偏置和磁偏置以最大化致动器的输出。驱动器设计主要由线圈,电阻最小的磁返回路径,电源和命令信号发生器组成。由于其电感,趋肤效应损耗和涡流损耗的增加,磁场驱动器汲取的功率随工作频率而增加。因此,具有低电阻率的磁致伸缩材料用作磁芯时,需要在设计驱动器时采用系统级方法。开发用于驱动磁致伸缩致动器的方法包括确定磁线直径,匝数,线圈长度的最佳值。线圈和整体几何形状。该方法还考虑了驱动线圈导线中的集肤效应损耗和磁致伸缩材料中的涡流损耗。通过添加与驱动器串联的电容器,可在所需的工作频率下产生谐振,从而进一步降低功耗。通过使用高导磁率的材料和定制几何形状的永磁体来确保最小的电阻磁返回路径。在这项研究工作中,系统的响应包括带有反射镜的悬臂梁模型和带有非线性执行器的一维模型磁致伸缩棒是凭经验测量的。使用定制的磁致伸缩镜偏转器对快速可调激光系统进行实验验证了所开发的方法。所制造的镜偏转器能够在5.28 kHz时产生6.1 mrad的偏转,功耗为0.8 W,在10.8 kHz时能产生3.8 mrad的偏转,而功耗为0.65W。所使用的谐振电路进一步降低了功耗。为32%。该方法已扩展到MEMS薄膜镜偏转器。;这里报道的工作是建立用于磁致伸缩致动器的高频高振幅驱动器的综合模型的第一步。这需要更多的工作来包括磁致伸缩杆和集成系统的真正非线性行为。

著录项

  • 作者

    Angara, Raghavendra.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号