首页> 外文学位 >Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed.
【24h】

Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed.

机译:低温流化床中IFE目标分层的数值和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The redistribution of deuterium (DD) or a deuterium-tritium mixture (DT) to form a layer on the inside of spherical inertial fusion energy (IFE) capsules is a challenging problem because of the symmetry requirements of the fuel layer thickness, the smoothness requirement of the outside target surface, the number of targets required, and the time restriction on the production process.;Several physical processes have been identified to interact with each other to influence the outcome of the layering process in a fluidized bed. These include the gas-flow-speed-dependent movement of unbalanced spheres through a fluidized bed and the resulting local heat transfer coefficient on the target surface from the cooling gas. The mass redistribution speed of the fuel inside the shell towards a uniform layer and the final layer thickness uniformity depend on the variation in time-averaged local heat transfer coefficient along the outer target surface. While a high gas flow rate through the bed would lead to more uniform time-averaged heat transfer coefficients, the high-Z layer covering the outer target surface has been observed to deteriorate through collisions at high impact velocities which occur during fluidization at high bed expansions.;The focus of this work was to develop numerical tools to help model and understand the physics involved in the fluidized bed layering and to assess the influence of key parameters on the layering outcome. Two separate models have been developed independently for particle behavior in a fluidized bed and for the coupled mass and heat transfer processes governing the layering process; these models include unique boundary conditions, beyond the capability of currently found commercial software. The models were validated through comparison with theoretical results and laboratory-scale experiments. They were then combined to model the entire layering process and used for parametric analyses. From these analyses, a window of operating parameters was identified at which a prototypic layering experiment is likely to be successful.
机译:由于燃料层厚度的对称性要求,光滑度要求,氘(DD)或氘-mixture混合物(DT)的重新分布以在球形惯性聚变能(IFE)胶囊内部形成一层是一个具有挑战性的问题。外部目标表面的数量,所需目标的数量以及生产过程的时间限制。;已经确定了几个物理过程相互影响,以影响流化床中分层过程的结果。这些因素包括不平衡球体通过流化床的气流速度相关运动,以及冷却气体在目标表面上产生的局部传热系数。壳内燃料朝着均匀层的质量重新分布速度和最终层厚度均匀性取决于沿外部目标表面的时间平均局部传热系数的变化。尽管流经床层的气体流速高会导致更均匀的时间平均传热系数,但已观察到覆盖在外部目标表面的高Z层会因在高床层膨胀时流化过程中发生的高冲击速度下的碰撞而变质这项工作的重点是开发数值工具,以帮助建模和理解流化床分层所涉及的物理原理,并评估关键参数对分层结果的影响。针对流化床中的颗粒行为以及控制成层过程的耦合传质和传热过程,已经分别开发了两个独立的模型。这些模型包括独特的边界条件,超出了当前发现的商业软件的能力。通过与理论结果和实验室规模的实验比较,对模型进行了验证。然后将它们组合以对整个分层过程建模,并用于参数分析。从这些分析中,确定了一个操作参数窗口,原型分层实验很可能会在该窗口成功进行。

著录项

  • 作者

    Boehm, Kurt Julian.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号