首页> 外文学位 >Fast computational techniques for multiscale electromagnetic simulations.
【24h】

Fast computational techniques for multiscale electromagnetic simulations.

机译:用于多尺度电磁仿真的快速计算技术。

获取原文
获取原文并翻译 | 示例

摘要

Multiscale electromagnetic simulations contain features with multiple length or frequency scales or both. Multiscale features are characteristic of realitic simulations as large degrees of freedom (N) are required to capture the minute physical details. Though integral equation (IE) approaches are well-suited for electromagnetic simulations, they require repeated evaluation of pair-wise potentials - also referred to as N-body problems. It is well known that the direct computation of these potentials scales as O (N2) both in terms of computer memory and time. Even with the rapid advancements in computer technology, this places severe limitation on the size of the problem (N) that can be analyzed in a realistic time frame. Further, multiscale simulations produce badly-conditioned systems of equations that require large number of iterations when using Krylov-subspace solvers. The main goal of this thesis is to develop a suite of computational techniques that enables multiscale electromagnetic simulations in a fast, efficient and stable fashion. In this work, the accelerated Cartesian expansion (ACE) algorithm is used to overcome the quadratic cost-scaling of N-body problems. ACE was intially developed for the fast evaluation of polynomial potentials and here it is extended to the fast computation of retarded and Helmholtz potentials. These algorithms are shown to be stable and efficient for computation of electromagnetic potentials at sub-wavelength or low-frequency scales. Hybrid combination of these algorithms with existing fast methods leads to the development of multiscale electromagnetic solvers that are stable and efficient across length and frequency scales. Since the fast algorithms only reduce the time spent in each iteration, a new integral equation formulation is developed that yields better conditioned systems of equations. This is achieved by reformulating the augmented field integral equations such that the resulting operators are bounded and compact. Further, the widespread availability of parallel distributed or cluster computers combined with the memory and speed restriction of single processor computers necessitates the development of efficient parallel implementation of the sophisticated fast algorithms. The parallel algorithms developed in this work are provably scalabale and enables simulation of problems with several millions of unknowns on large scale clusters, with hundreds of processors and beyond. In this thesis, ACE algorithm is also extended to rapid computation of time domain diffusion potentials.
机译:多尺度电磁仿真包含具有多个长度或频率标度或两者兼有的特征。多尺度特征是真实模拟的特征,因为需要大的自由度(N)才能捕获微小的物理细节。尽管积分方程(IE)方法非常适合电磁仿真,但它们需要重复评估成对电位-也称为N体问题。众所周知,就计算机存储和时间而言,这些电势的直接计算均标为O(N2)。即使计算机技术日新月异,这也严重限制了可以在现实的时间范围内分析的问题(N)的大小。此外,使用Krylov子空间求解器时,多尺度模拟会产生条件恶劣的方程组,需要大量的迭代。本文的主要目的是开发一套计算技术,以快速,有效和稳定的方式实现多尺度电磁仿真。在这项工作中,加速的笛卡尔展开(ACE)算法用于克服N体问题的二次成本标度。 ACE最初是为快速评估多项式电势而开发的,在这里它扩展到了对延迟和亥姆霍兹电势的快速计算。这些算法对于在亚波长或低频范围内的电磁势的计算是稳定且有效的。这些算法与现有快速方法的混合组合导致开发了在长度和频率范围内稳定且高效的多尺度电磁求解器。由于快速算法仅减少了每次迭代所花费的时间,因此开发了一种新的积分方程公式,可以产生条件更好的方程系统。这是通过重新构造扩展场积分方程来实现的,从而使所得算子有界且紧凑。此外,并行分布式或群集计算机的广泛可用性与单处理器计算机的内存和速度限制相结合,需要开发复杂的快速算法的有效并行实现。在这项工作中开发的并行算法可证明是可缩放的,并且可以在具有数百个处理器及更多处理器的大规模集群上模拟具有数百万个未知数的问题。本文还将ACE算法扩展到快速计算时域扩散势。

著录项

  • 作者

    Melapudi, Vikram.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号