首页> 外文学位 >Molecular dynamics simulation of shock waves in laser-material interaction.
【24h】

Molecular dynamics simulation of shock waves in laser-material interaction.

机译:激光与材料相互作用中冲击波的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

In recent decades, laser technology has been widely used in manufacturing, non-destructive measurement processes, and has been extensively implemented in medical applications. The detailed knowledge of the laser-target interaction along with accompanied effects in background environment is absolutely essential due to the significance of the intricate existing occurrences. Therefore, in this discourse, a number of phenomena in laser-material interaction at nanoscale are studied thorough.;Firstly, the dynamics and internal structure of shock waves in picosecond lasermaterial interaction are explored at the atomistic level. The pressure of the shock wave, its propagation, and interaction zone thickness between the plume and ambience are evaluated to study the effect of the laser absorption depth, ambient pressure, and laser fluence. Sound agreement is observed between the molecular dynamics simulation and theoretical prediction on shock wave propagation and mass velocity. Due to the strong constraint from the compressed ambient gas, it is observed that the ablated plume could stop moving forward and mix with the ambient gas, or move backward to the target surface, leading to surface redeposition. Under smaller laser absorption depth, lower ambient pressure, or higher laser fluence, the shock wave will propagate faster and have a thicker interaction zone between the target and ambient gas.;Secondly, the effects of shock driven process of the laser-ablated argon plume in the background gas environment are explored via molecular dynamics simulations. The primary shock wave propagation and its influence on the backward motion of the target material are delineated. It has been observed that the strong pressure gradient inside the main shock wave overcomes the forward momentum of the plume and some compressed gas, leading to backward movement and re-deposition on the target surface. Reflection of the backward moving gas on the target surface results in the secondary shock wave. Detailed investigation of the secondary shock wave phenomenon is provided, which gives, for the first time, an insight into formation and evolution of the internal gaseous shock at the atomistic level.;Thirdly, the physics of plume splitting in pico-second laser material interaction in background gas are studied with MD simulations. The velocity distribution shows a clear split into two distinctive components. For the first time, detailed atom trajectory track reveals the behavior of atoms within the peaks and uncovers the mechanisms of peak formation. The observed plume velocity splitting emerges from two distinguished parts of the plume. The front peak of the plume is from the faster moving atoms and smaller particles during lasermaterial ablation. This region experiences strong constraint from the ambient gas and has substantial velocity attenuation. The second (rear) peak of the plume velocity originates from the larger and slower clusters in laser-material ablation. These larger clusters/particles experience very little constraint from the background, but are affected by the relaxation dynamics of plume and appear almost as a standing wave during the evolution. Density splitting only appears at the beginning of laser-material ablation and quickly disappears due to spread-out of the slower moving clusters. It is found that higher ambient pressure and stronger laser fluence favor earlier plume splitting.;Finally, the conclusions are drawn and author's contributions from performed work are delineated.
机译:近几十年来,激光技术已广泛用于制造,无损测量过程中,并已广泛应用于医疗应用中。由于复杂的现有事件的重要性,对激光-目标相互作用以及背景环境中伴随效应的详细了解是绝对必要的。因此,在本篇论文中,将深入研究纳米级激光材料相互作用中的许多现象。首先,在原子级上研究皮秒激光材料相互作用中冲击波的动力学和内部结构。评估了冲击波的压力,其传播以及羽流与环境之间的相互作用区域厚度,以研究激光吸收深度,环境压力和激光注量的影响。在分子动力学模拟和理论预测之间,在冲击波传播和质量速度方面观察到了合理的一致性。由于来自压缩环境气体的强烈约束,可以观察到,烧蚀后的烟流可能停止向前移动并与环境气体混合,或者向后移动到目标表面,从而导致表面重新沉积。在较小的激光吸收深度,较低的环境压力或较高的激光注量下,冲击波将更快地传播并且在目标气体与环境气体之间具有较厚的相互作用区域。其次,激光烧蚀的氩羽流受到冲击驱动过程的影响通过分子动力学模拟探索了背景气体环境中的气体。描绘了初级冲击波的传播及其对靶材向后运动的影响。已经观察到,主冲击波内部的强压力梯度克服了羽流的向前动量和某些压缩气体,从而导致向后运动并重新沉积在目标表面上。向后移动的气体在目标表面上的反射会导致二次冲击波。提供了对次生冲击波现象的详细研究,这首次使我们深入了解了内部气体冲击在原子水平上的形成和演化。第三,皮秒激光材料相互作用中羽流分裂的物理学。 MD模拟研究了背景气体中的二氧化碳。速度分布清楚地分为两个不同的分量。详细的原子轨迹轨迹首次揭示了峰内原子的行为,并揭示了峰形成的机理。观察到的羽流速度分裂来自羽流的两个不同部分。羽流的前峰来自激光材料烧蚀过程中运动更快的原子和较小的颗粒。该区域受到周围气体的强烈约束,并具有明显的速度衰减。羽流速度的第二个(后)峰值来自激光材料烧蚀中较大和较慢的簇。这些较大的团簇/粒子不受背景的约束,但是受到羽流松弛动力学的影响,并且在演化过程中几乎表现为驻波。密度分裂仅出现在激光材料烧蚀的开始,并且由于较慢的运动簇的散布而迅速消失。发现较高的环境压力和较强的激光注量有利于较早的羽流分裂。最后,得出结论并描述了作者从已完成的工作中所做出的贡献。

著录项

  • 作者

    Gacek, Sobieslaw Stanislaw.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号