首页> 外文学位 >Modeling and fabrication of MEMS actuators, utilizing shape memory alloy & bimetallic materials.
【24h】

Modeling and fabrication of MEMS actuators, utilizing shape memory alloy & bimetallic materials.

机译:利用形状记忆合金和双金属材料对MEMS执行器进行建模和制造。

获取原文
获取原文并翻译 | 示例

摘要

One recent direction within the field of robotics is the miniaturization of biomimetic robots, utilizing compliant materials. In order to meet the power-to-weight ratio required, nontraditional materials have been proposed for actuation. In this thesis, we explore the use of miniature actuators in order to power two small scale soft-bodied robots, mimicking the Manduca sexta hornworm caterpillar. This thesis will discuss the fabrication and modeling technique for producing and characterizing MEMS thin film actuators. While outside of the scope of this thesis project, in the future these film actuators will be either integrated into, or bonded to, the body wall of these meso-scale robots.;The design and preliminary fabrication technique of the film actuator is leveraged from the previous works of Gerratt [1]. The devices consist of a metal film patterned via sputter deposition, encased within an elastomeric polyimide structure. The polyimide structure acts as a bias spring, aiding to return the actuator to its start position, following activation. A variety of configurations were designed, each with differing wire widths, sinusoidal waveforms, and polyimide structure patterns. The surface area of these small-scale devices range from 15-171mm2, each with a cross-sectional thickness of 10mum.;While the initial design consists of patterned Nitinol (NiTi), this thesis project also offers an alternate source of actuation via bimetallic films. Nitinol is a Shape Memory Alloy (SMA) that actively strains due to a phase transformation of the material's crystal structure. This phase change allows SMA materials to exhibit large pseudo-plastic strains (>10% [2]) versus the elastic range limited to most engineering materials (typically less than 2%). However, due to fabrication concerns with heat treatment the amorphous SMA material ex situ, our attention has turned to a Bimetallic film comprised of Silver (Ag) and Titanium (Ti). While this material design will not be capable of large unidirectional elongation, it offers out-of-plane bending which may also aid the locomotion of the soft-bodied robot.;This thesis project will present solutions to the fabrication issues encountered by Gerratt as well as present a mathematical system model approach to understanding the mechanical output of both SMA and bimetallic materials. The applicability of the derived system model will be evaluated using experimental results on commercially available SMA coil springs.
机译:机器人技术领域的一个最新方向是利用顺应性材料使仿生机器人小型化。为了满足所需的功率重量比,已经提出了用于驱动的​​非传统材料。在本文中,我们探索了微型致动器的使用,以便为两个小型仿生机器人提供动力,它们模仿了曼杜卡(Medduca sexta)角虫毛虫。本文将讨论用于制造和表征MEMS薄膜致动器的制造和建模技术。虽然不在本论文项目的范围内,但将来这些薄膜执行器将集成到或粘合到这些中尺度机器人的机体壁上。薄膜执行器的设计和初步制造技术可从Gerratt的先前著作[1]。装置由金属膜组成,该金属膜通过溅射沉积形成图案,并包裹在弹性聚酰亚胺结构中。聚酰亚胺结构用作偏置弹簧,有助于在激活后使执行器返回其起始位置。设计了多种配置,每种配置具有不同的线宽,正弦波形和聚酰亚胺结构图案。这些小型设备的表面积为15-171mm2,每一个的横截面厚度为10mum 。;虽然最初的设计由图​​案化的镍钛诺(NiTi)组成,但本论文项目还提供了另一种通过双金属驱动的来源。电影。镍钛诺是一种形状记忆合金(SMA),会由于材料晶体结构的相变而产生积极应变。这种相变使SMA材料表现出较大的假塑性应变(> 10%[2]),而弹性范围仅限于大多数工程材料(通常小于2%)。但是,由于对非晶态SMA材料进行热处理的加工问题,我们的注意力转向了由银(Ag)和钛(Ti)组成的双金属膜。尽管这种材料设计不能具有较大的单向伸长率,但它提供了平面外弯曲,这也可能有助于软体机器人的运动。;本论文项目还将提出解决方案,解决Gerratt遇到的制造问题作为目前的数学系统模型方法,可以理解SMA和双金属材料的机械输出。导出的系统模型的适用性将使用在商用SMA螺旋弹簧上的实验结果进行评估。

著录项

  • 作者

    Kierstead, Brian P.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号