首页> 外文学位 >Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation.
【24h】

Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation.

机译:用于氢产生和分离的复合混合离子电子导电(MIEC)膜。

获取原文
获取原文并翻译 | 示例

摘要

Decomposition of steam under a chemical driving force at moderate temperatures (∼900 °C) offers a convenient and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing oxygen using a mixed ion-electron conducting (MIEC) membrane. In this work, Gd0.2Ce0.8O1.9-delta - Gd0.08Sr0.88Ti0.95Al0.05O 3+/-delta MIEC membranes have been explored in which, Gd 0.2Ce0.8O1.9-delta (GDC) functions as a predominantly oxygen ionic conductor, and Gd0.08Sr0.88Ti0.95 Al0.05O3+/-delta (GSTA) functions as a predominantly n-type electronic conductor under the process conditions. During the hydrogen generation process, oxygen transports from the feed side to the permeate side through coupled diffusion of oxygen ions and electrons under an oxygen partial pressure gradient across membranes. This process results in a H2-rich product on the feed side and depleted fuel gases on the permeate side.;In this work, membrane architectures comprising self-supported thick membranes and thin membranes supported on porous supports of the same composition have been studied. The effect of membrane thickness on hydrogen generation has been studied by measuring the area-specific hydrogen generation rates at different experimental conditions. Experimental results have shown that the hydrogen generation process for the thick membranes was controlled by the oxygen bulk diffusion through membranes, while the hydrogen generation process for the dense thin membranes was controlled by both the surface exchange reactions and oxygen bulk diffusion process. The area-specific hydrogen generation rates of the supported dense thin membranes were significantly enhanced by applying a porous catalytic layer onto the surface of the membrane. Experimental results showed that the area-specific hydrogen generation rates were higher when the surface catalytic layer was exposed to the feed side rather than the permeate side. A mathematical model for calculation of the area-specific hydrogen generation rate has been developed that takes into account the measured oxygen partial pressures, gas compositions, and gas flow rates of the inlet and outlet gases on the feed side of the membrane. Based on these results, recommendations have been made for a system based on an MIEC membrane to generate hydrogen at commercially attractive rates.
机译:在化学驱动力下,蒸汽在中等温度(约900°C)下分解提供了一种方便且经济的方式来产生氢气。通过使用混合离子电子传导(MIEC)膜分离蒸汽并除去氧气,可以生成和分离大量氢气。在这项工作中,研究了Gd0.2Ce0.8O1.9-δ-Gd0.08Sr0.88Ti0.95Al0.05O 3 +/-δMIEC膜,其中Gd0.2Ce0.8O1.9-δ(GDC)的作用是在工艺条件下,Gd0.08Sr0.88Ti0.95 Al0.05O3 +/- delta(GSTA)主要用作氧离子导体。在制氢过程中,氧气通过氧气离子和电子在氧气分压梯度下跨膜的耦合扩散,从进料侧传输到渗透侧。该方法在进料侧产生富H2的产物,而在渗透侧产生贫化的燃料气体。在这项工作中,已经研究了包含自支撑的厚膜和支撑在相同组成的多孔载体上的薄膜的膜结构。通过在不同的实验条件下测量面积比氢气产生速率,研究了膜厚度对氢气产生的影响。实验结果表明,厚膜的产氢过程受氧在膜中的扩散控制,致密膜的产氢过程受表面交换反应和氧的扩散过程控制。通过在膜表面上施加多孔催化层,可以显着提高负载的致密薄膜的比表面积氢生成速率。实验结果表明,当表面催化层暴露于进料侧而不是渗透侧时,比表面积氢的生成速率更高。已经开发了用于计算面积比氢气产生速率的数学模型,该数学模型考虑了在膜的进料侧上测得的氧气分压,气体成分以及进气和出气的气体流速。基于这些结果,已经提出了基于MIEC膜的系统的建议,该系统以商业上有吸引力的速率产生氢气。

著录项

  • 作者

    Wang, Haibing.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号