首页> 外文学位 >Modeling multi-stage flows and aeroelasticity in transonic gas turbine compressors.
【24h】

Modeling multi-stage flows and aeroelasticity in transonic gas turbine compressors.

机译:对跨音速燃气轮机压缩机中的多级流动和空气弹性建模。

获取原文
获取原文并翻译 | 示例

摘要

Modern desire to have turbomachines perform over a large range of conditions raises concerns as to their susceptibility to potentially harmful vibrations induced by the unsteady flows encountered at conditions far from the design point. Machines demonstrating this type of behavior may be damaged by fatigue or be subject to catastrophic failure. Due to these concerns and the relative expense and difficulty in obtaining accurate experimental data for fluid-structure interaction in turbomachines, computations have been and will continue to be an indispensable part of the design and research efforts focused on avoiding such phenomena. While the traditional computational analysis considering a single isolated blade row can aid in understanding the mechanisms that initiate vibrations in turbomachines, study of multiple blade rows may be necessary to completely model the underlying causes of these vibrations.;In the present work, the mixing-plane and sliding-mesh methods are used to simulate both steady and unsteady multi-stage transonic compressor flows. The simulations conducted here include the solution of the compressible unsteady Reynolds Averaged Navier Stokes (RANS) Equations. The Spalart Almaras model is used to simulate the effects of turbulence in the flow field. A modal superposition method is used to model fluid-structure interaction resulting from blade vibration.;Steady flow through the NASA Stage 35 transonic compressor is computed using the mixing-plane method, and reasonable agreement is obtained with experimental data and previous computations. Steady and unsteady computations are also performed for a modern 1.5-stage transonic compressor design provided by Siemens. For this case, experiments indicate the appearance of low frequency, large amplitude flow oscillations which could potentially lead to unwanted structural vibration. In performing unsteady computations for the Siemens compressor, effects of the periodic domain size for the sliding-mesh computations are considered by doubling and tripling the initial domain size. Computations performed on the triple-sized domain show a qualitatively different character than those performed with the two smaller domains. While this result cannot guarantee that the large domain has fully resolved the unsteady flow, it provides a strong argument that the two smaller domains have not, and highlights the need to clearly identify the circumferential wavelengths expected in an unsteady multi-stage flow. Fluid-structure interaction computations for this case show very small amplitude vibrations.
机译:现代要求涡轮机在大范围条件下工作的愿望引起了人们对涡轮机在远离设计点的条件下遭受不稳定流动的潜在危害的担忧。表现出这种行为的机器可能会因疲劳而损坏或遭受灾难性故障。由于这些问题以及为获得涡轮机中流固耦合所需要的准确实验数据的相对费用和困难,计算一直是并将继续是致力于避免此类现象的设计和研究工作中不可或缺的部分。传统的考虑单个孤立叶片行的计算分析可以帮助理解引起涡轮机振动的机理,但是可能需要研究多个叶片行以完全模拟这些振动的根本原因。在当前工作中,混合-平面和滑动网格方法用于模拟稳态和非稳态多级跨音速压缩机的流动。这里进行的模拟包括可压缩的非定常雷诺平均纳维斯托克斯(RANS)方程的解。 Spalart Almaras模型用于模拟湍流在流场中的影响。采用模态叠加法对叶片振动引起的流固耦合进行建模。采用混合平面法计算出流经NASA Stage 35跨音速压缩机的稳态流量,并与实验数据和先前的计算结果取得了合理的一致性。西门子还为现代1.5级跨音速压缩机设计执行了稳态和非稳态计算。对于这种情况,实验表明出现了低频大振幅流动振荡,这可能会导致有害的结构振动。在对Siemens压缩机执行非稳定计算时,通过将初始域大小加倍和三倍来考虑周期性网格大小对滑动网格计算的影响。在三倍域上执行的计算与在两个较小域上执行的计算在质量上具有不同的特征。尽管此结果不能保证大范围域已完全解决了非稳态流,但它提供了一个强有力的论据,即两个较小域域没有,并强调需要明确识别非稳态多级流域中预期的圆周波长。在这种情况下,流固耦合计算显示出很小的振幅振动。

著录项

  • 作者

    Culver, Roy Milton.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号