首页> 外文学位 >Modeling, design, and analysis on the resilience of large-scale wireless multi-hop networks.
【24h】

Modeling, design, and analysis on the resilience of large-scale wireless multi-hop networks.

机译:大型无线多跳网络弹性的建模,设计和分析。

获取原文
获取原文并翻译 | 示例

摘要

Wireless multi-hop networks are more vulnerable to failures due to topology changes, node misbehaviors, or even security attacks, which imposes a critical demand for the resilience of these networks. Motivated by this demand and the limitation of current research, we first propose a novel semi-Markov node behavior model to analyze the impacts of node misbehaviors and failures on the node connectivity. Based on the modeling, the topological survivability of wireless networks is analyzed and the asymptotic bounds of the probabilistic k-connectivity are obtained and evaluated. In order to mitigate the impact of routing misbehaviors on network performance and topological connectivity, we next design a distributed topology control protocol, called PROACtive, to achieve (suboptimal) resilient topologies upon the original non-cooperative networks. Simulation results show that our protocol maintains generated topologies k-connected with high probability and improves network goodput significantly with low communication overhead. Noticing that a full connectivity can be impractical to achieve for large-scale networks, we then focus on the resilience of large-scale networks to random failures and investigate the critical time at which the network topology decomposes from a giant component to small disconnected parts. By coupling the network devolution process with an inverse continuum percolation process, we find the scaling laws of the critical phase transition time with respects to both light-tailed and heavy-tailed node lifetime distributions and show that a network with non-uniform node distribution may be more resilient to random failures than a network with uniform node distribution. Finally, we study the connection availability from the perspective of end users with individual mobility by analyzing the stochastic properties of the times for a node to connect any neighbor and the giant component, respectively. By using the theory of Markov renewal process, stochastic geometry, and bond percolation, we obtain the asymptotic bound on the expected neighbor connection time and provide the distribution of the time to contact the giant component. Our results will shed new lights on the fundamental analysis as well as the practical design of resilient wireless multi-hop networks.
机译:无线多跳网络更容易因拓扑变化,节点行为不当甚至安全攻击而导致故障,这对这些网络的弹性提出了至关重要的要求。基于这种需求和当前研究的局限性,我们首先提出了一种新型的半马尔可夫节点行为模型,以分析节点行为不当和故障对节点连通性的影响。在此基础上,对无线网络的拓扑生存能力进行了分析,得出了概率k连通性的渐近界。为了减轻路由行为对网络性能和拓扑连接性的影响,我们接下来设计一种称为PROACtive的分布式拓扑控制协议,以在原始非合作网络上实现(次优)弹性拓扑。仿真结果表明,我们的协议以较高的概率保持k-connected生成的拓扑结构,并以较低的通信开销显着提高了网络吞吐量。注意到对于大型网络而言,实现完全连接可能是不切实际的,因此,我们将重点放在大型网络对随机故障的弹性上,并研究网络拓扑从巨型组件分解为较小的断开部分的关键时间。通过将网络转移过程与逆连续渗流过程耦合,我们发现了相对于轻尾和重尾节点寿命分布的临界相变时间的缩放定律,并表明了节点分布不均匀的网络可能比具有均匀节点分布的网络更能抵抗随机故障。最后,我们通过分析节点分别连接任何邻居和巨型组件的时间的随机属性,从具有个体移动性的最终用户的角度研究连接可用性。通过使用马尔可夫更新过程,随机几何和键渗流的理论,我们获得了预期邻居连接时间的渐近界,并提供了与巨型部件接触的时间分布。我们的结果将为弹性无线多跳网络的基础分析和实际设计提供新的思路。

著录项

  • 作者

    Xing, Fei.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号