首页> 外文学位 >An algorithm for fully resolved simulation of self-propulsion through fluid and an analysis of the hydrodynamics of ribbon-fin propulsion.
【24h】

An algorithm for fully resolved simulation of self-propulsion through fluid and an analysis of the hydrodynamics of ribbon-fin propulsion.

机译:一种用于流体自推进的完全解析模拟的算法,以及带状鳍推进的流体动力学分析。

获取原文
获取原文并翻译 | 示例

摘要

The study of aquatic locomotion can help us understand the relationship between an organism's hydrodynamics, its motor control, and its morphology. It can also provide fundamental knowledge for applications such as the design of underwater vehicles. To study aquatic locomotion, in this thesis work we present a computational method to fully resolved simulation of self-propulsion. We then go on to apply this algorithm to the hydrodynamics of ribbon fin propulsion. This type of propulsion is used by gymnotiform fish, such as the weakly electric black ghost knifefish (Apteronotus albifrons), a biological model to study sensory processing in vertebrates.;The computational method for the problem of self-propulsion presented here is an iterative algorithm which we call the Fully Implicit Iterative Self-Propulsion Algorithm (FIISPA). The computational method solves for the swimming velocities of the organism with prescribed deformation kinematics. A solution for the surrounding flow field is also obtained. This approach uses a new constraint-based formulation of the problem of self-propulsion developed by Shirgaonkar et al. [1]. The key idea for the constraint-based formulation is to assume that the entire fluid-body domain is a fluid. Then we imposed the constraint that the deformation rate tensor associated with the rigid motion component of the swimming body is equal to zero.;We validate the computational method by simulating self-propulsion of bacterial flag-ella, toroidal swimmers, jellyfish (Aurelia aurita ), and larval zebrafish (Danio rerio). Comparison of the computational results with theoretical or experimental results for the test cases is found to be very good.;We also present a computational and experimental study of the hydrodynamics of ribbon-fin propulsion. The weakly electric knifefish, A. albifrons, can perform impressive maneuvers such as backward swimming, rapid switch of swimming direction and vertical swimming using an elongated anal ribbon fin. Using computational fluid dynamics and digital particle velocimetry, we examine the hydrodynamics of a non-translating ribbon fin in stationary water. We also examine experimentally and computationally how A. albifrons can swim vertically using ribbon fin propulsion. The underlying mechanism and hydrodynamics of this maneuver is presented.
机译:对水上运动的研究可以帮助我们理解生物体的水动力,其运动控制和形态之间的关系。它还可以为诸如水下航行器设计之类的应用提供基础知识。为了研究水上运动,在本文工作中,我们提出了一种完全解决自推进模拟的计算方法。然后,我们继续将此算法应用于带状鳍推进的流体动力学。这种类型的推进器通过gymnotiform鱼使用的,诸如弱电动黑鬼西刀鱼(Apteronotus白额),生物模型来研究在脊椎动物的感觉处理;用于自推进的这里提出的问题的计算方法是一种迭代算法我们称之为完全隐式迭代自推进算法(FIISPA)。该计算方法利用规定的变形运动学解决了有机体的游泳速度。还可以获得周围流场的解决方案。这种方法使用了Shirgaonkar等人开发的基于约束的自我推进问题的新表述。 [1]。基于约束的公式化的关键思想是假设整个流体体域都是流体。然后施加了与游泳体刚体运动分量相关的变形率张量等于零的约束条件;通过模拟细菌鞭毛,环形游泳者,水母(Aurelia aurita)的自推进来验证该计算方法和幼虫斑马鱼(Danio rerio)。对于测试用例,将计算结果与理论或实验结果进行比较是非常好的。;我们还对带状翅片推进的流体动力学进行了计算和实验研究。弱电刀鱼A. albifrons可以执行令人印象深刻的动作,例如后向游泳,快速切换游泳方向和使用细长的肛门带状鳍垂直游泳。使用计算流体动力学和数字粒子测速技术,我们研究了固定水中非平移带状翅片的流体动力学。我们还通过实验和计算研究了使用带状鳍推进器的拟南芥如何垂直游泳。提出了该操纵的基本机理和流体动力学。

著录项

  • 作者

    Curet, Oscar Manuel.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号