首页> 外文学位 >Determination of 3-dimensional deformations of the alveolar sac during simulated breathing.
【24h】

Determination of 3-dimensional deformations of the alveolar sac during simulated breathing.

机译:确定模拟呼吸过程中肺泡囊的三维变形。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical properties of the parenchyma of the lung are currently unknown and difficult to quantify. Creating a computer model with valid property values will allow researchers to further investigate particle mixing in the lung during inhalation and exhalation. One challenge with modeling the material of the lung is the intricate geometry of the alveolar sac. Researchers are currently trying to model particle deposition within the lung using computational fluid dynamics. However, the mechanical properties of alveolar sac structure are currently undetermined.;Due to the complexity of the physical structure of an alveolar sac, it has been a challenge to model fluid-structural interactions during breathing. To assist in quantifying these interactions, computer aided finite element models are a necessity. These models will allow for calculation of the deflections and deformations of the physical structures of fluid containing membranes. The focal point of the project was to determine mechanical properties of a series of materials. There is currently no process for determining these properties and this was a major accomplishment of this research. The process of finding these properties can be applied to other materials in the future, even on a micro-scale, such as real alveolar tissue materials. These properties were applied to a series of finite element models, predicting deflection.;Mechanical properties were determined by using different test specimens to collect data and fit to a Mooney Rivlin model. The results were then applied to a series of finite element models, one for each test specimen and one for a spherical boiling flask. The boiling flask tests showed promising outcome for future research, with a determined material model nearly 40% increase in accuracy from prior research.;The tests were able to be replicated for a second surrogate material, showing that the process works for more than just a single material and allowing the process to be used with a new material in the future.
机译:目前尚不清楚肺实质的机械性质,并且难以量化。创建具有有效属性值的计算机模型将使研究人员可以进一步研究吸入和呼出期间肺中的颗粒混合情况。对肺部材料进行建模的一个挑战是肺泡囊的复杂几何形状。研究人员目前正在尝试使用计算流体动力学对肺内的颗粒沉积进行建模。然而,目前还不能确定肺泡囊结构的机械性能。由于肺泡囊的物理结构的复杂性,在呼吸过程中对流体-结构相互作用进行建模一直是一个挑战。为了帮助量化这些相互作用,必须使用计算机辅助的有限元模型。这些模型将允许计算包含流体的膜的物理结构的挠度和变形。该项目的重点是确定一系列材料的机械性能。当前没有确定这些性质的过程,这是这项研究的主要成就。寻找这些特性的过程将来甚至可以应用于微小的其他材料,例如真正的牙槽组织材料。将这些特性应用于一系列有限元模型,以预测挠度。通过使用不同的试样收集数据并拟合Mooney Rivlin模型来确定机械特性。然后将结果应用于一系列有限元模型,每个样品一个,球形沸腾瓶一个。沸腾瓶测试显示了未来研究的前景可喜的结果,确定的材料模型比以前的研究准确性提高了近40%.;这些测试可以复制为第二种替代材料,表明该过程不仅适用于单一材料,并允许将来将该工艺与新材料一起使用。

著录项

  • 作者

    Ferrara, Joseph M.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号