首页> 外文学位 >Evaluation des impacts de l'utilisation des terres en analyse du cycle de vie: Caracterisation axee sur la qualite des sols.
【24h】

Evaluation des impacts de l'utilisation des terres en analyse du cycle de vie: Caracterisation axee sur la qualite des sols.

机译:评估土地利用在生命周期分析中的影响:表征重点在于土壤质量。

获取原文
获取原文并翻译 | 示例

摘要

The mechanisms underlying the deterioration of natural environmental quality are mainly anthropogenic. Although they are not intentional, the consequences of human dominance are numerous, especially on natural ecosystems and their sustainability. Given its essential and complex role in maintaining terrestrial ecosystem functioning, the soil performs many fundamental functions. Thus, its ecological quality is crucial.;The research hypothesis of this project is as follows: Using a spatial model allows discriminating spatial variability of biogeographical parameters and improves the geo-spatial representativeness of CFs within the context of LCA land use impact assessment. The main goals are: 1) to establish a conceptual framework accounting for LCA land use impacts on soil ecological quality, 2) to develop CFs for a Canadian context using a spatially-explicit approach and 3) to operationalize the approach at a global scale.;The conceptual framework is established in order to harmonize major impact pathways suggested in LCA. It mainly focuses on the impact pathway regarding soil ecological quality by considering the multifunctional aspect of soil and emphasizing its contribution to more global ecosystem services at a larger scale. Thus, impacts are evaluated based on the soil's performance to fulfill a range of intended ecological functions and for which impact indicators have to be selected. Hence, a modified version of the cause effect chain is suggested and considered more adapted than what is currently proposed.;Four impact indicators, namely erosion resistance (ton/ha.yr), groundwater recharge (mm/yr), mechanical (cm/d) and chemical filtration (cmolc/kg soil), are used to assess respectively the performance of three major ecosystem services reported to be degraded: erosion regulation, freshwater regulation and water purification. The choice of indicators is based on the method proposed by Baitz's (2002) and further developed into a calculation tool model, LANCA (Beck et al., 2010). Within the context of LCA, the potential impact magnitude is calculated based on the evolution of soil ecological quality over time and is proportional to the CF. The latter consists of a difference in quality between a reference state (potential natural vegetation (PNV)) and the use state.;Based on a holistic approach, Life Cycle Assessment (LCA) is a decision-support tool used for the assessment of potential environmental impacts of a product over its entire life cycle. It is well established that land use causes impacts on biodiversity and is a primary source of soil degradation affecting its ecological quality. However, land use impact assessment methods are still lacking within LCA. So far, several published studies have only focused on the assessment of impacts on biodiversity and biotic production capacity, the latter being one ecological function among others. Moreover, the concept of regionalization (i.e. considering different impacts depending on the conditions of the location where they occur) is hardly explored. Indeed, developed within a European context, characterization factors (CFs) are often generic and do not account for spatial differentiation. Therefore, the geographic scope of land use impacts characterization is judged insufficient, creating doubts regarding LCA results credibility, especially for a Canadian context which spreads over several distinct ecological regions.;The development of CFs using a spatially-explicit approach is performed for the Canadian context using one non-spatial (Canada generic (1)) and two spatial models based on different spatial resolution scales (ecozones (15) and ecoregions (193)). For each impact indicator, results are obtained for a representative set of seven land use types. Similarly, the operationalization at a global scale is addressed using an ecological classification system based on a range of different bioclimatic worldwide zones. Two spatial resolution scales are adopted: Holdridge Life zones (9) and sub-zones (39). A non spatial version of the world is also developed for comparative purposes (World generic (1)).;When assessing CFs spatial variability, two types of differentiation are identified: land use types and ecological classification systems. The first type aims to compare the impact magnitude from different land use types within the same ecological unit, while the second type considers the impact induced from the same type of activity among a range of ecological units differing by their properties and vulnerability.;For both contexts, Canadian and global, choosing a generic model that does not consider any spatial differentiation proves to be insufficient and fails to represent adequately the spatial variability linked to CFs across different ecological units and for a range of land use types. The generic model tends to over or under-estimate around 25% of the results distribution obtained when using spatial models. For instance, when considering an urban land use type, CFs for groundwater recharge capacity obtained with the ecozone-based model are up to 11 times smaller than the one from the non spatial Canadian model for semi-arid areas (Prairies) and up to 4 times larger for areas with high precipitation rates (Atlantic Maritime). This highlights the importance of introducing a regionalized assessment.;However, a more refined resolution such as the Canadian ecoregions or the Holdridge Life subzones- based scales is to a certain extent, more appropriate. On one hand, it certainly brought additional discriminations than a coarser scale by identifying particular (improvement functional capacity instead of a reduction) and extreme scenarios (very high and low CFs). On the other hand, overall comparison of range sample and distribution between both spatial resolution schemes didn't reveal significant differences for all impact indicators. Only results obtained for chemical and mechanical filtration capacities were significantly different and which can be explained by the heterogeneous nature of site-specific soil properties.;The operationalization and the development of CFs at a global scale are a major contribution since they demonstrate the possibility to generate CFs at a national and continental scale, which can be adapted for several different geographical scopes. Such findings may fill crucial gap issues for the databases, which does not consider any geospatial information, and improve spatial compliance of the generic CFs used.
机译:导致自然环境质量恶化的机制主要是人为的。尽管不是故意的,但人类支配地位的后果是多种多样的,尤其是对自然生态系统及其可持续性的影响。考虑到土壤在维持陆地生态系统功能方面的重要作用和复杂作用,土壤具有许多基本功能。因此,其生态质量至关重要。该项目的研究假设如下:使用空间模型可以区分生物地理参数的空间变异性,并在LCA土地利用影响评估的背景下提高CFs的地理空间代表性。主要目标是:1)建立一个概念框架,说明LCA土地使用对土壤生态质量的影响; 2)使用空间明晰方法在加拿大背景下开发CFs; 3)在全球范围内实施该方法。 ;建立概念框架是为了协调LCA中建议的主要影响途径。它主要通过考虑土壤的多功能性并强调其对更大范围的全球生态系统服务的贡献,着眼于土壤生态质量的影响途径。因此,根据土壤的性能评估影响,以实现一系列预期的生态功能,并且必须选择影响指标。因此,提出了因果链的修改版本,并认为它比目前的提议更适合。四个影响指标,即抗侵蚀性(吨/公顷),地下水补给量(毫米/年),机械性(厘米/年) d)和化学过滤(cmolc / kg土壤)分别用于评估据报将退化的三种主要生态系统服务的绩效:侵蚀调节,淡水调节和水净化。指标的选择基于Baitz(2002)提出的方法,并进一步发展为LANCA计算工具模型(Beck等,2010)。在LCA的背景下,潜在影响的大小是根据土壤生态质量随时间的演变来计算的,并且与CF成正比。后者由参考状态(潜在的自然植被(PNV))和使用状态之间的质量差异组成。;基于整体方法,生命周期评估(LCA)是用于评估潜在能力的决策支持工具产品在整个生命周期中的环境影响。众所周知,土地利用会对生物多样性产生影响,并且是土壤退化影响其生态质量的主要来源。但是,LCA仍缺乏土地使用影响评估方法。迄今为止,一些已发表的研究仅集中在对生物多样性和生物生产能力的影响进行评估,后者是其中的一种生态功能。此外,几乎没有探讨区域化的概念(即根据影响发生的地点的条件来考虑不同的影响)。实际上,在欧洲范围内发展起来的特征因子(CFs)通常是通用的,不能解释空间差异。因此,人们认为土地利用影响描述的地理范围不足,从而使人们对LCA结果的可信度产生怀疑,尤其是对于分布在多个不同生态区域的加拿大环境而言。;对加拿大进行了空间明晰方法的CFs开发使用一个非空间(加拿大通用(1))和两个基于不同空间分辨率尺度(生态区(15)和生态区(193))的空间模型的环境。对于每个影响指标,将获得具有代表性的七种土地利用类型的结果。同样,在全球范围内使用基于一系列不同生物气候区域的生态分类系统来解决该问题。采用两个空间分辨率标度:Holdridge生命区(9)和子区(39)。还出于比较目的而开发了世界的非空间版本(世界通用(1))。;在评估CF的空间变异性时,确定了两种类型的区分:土地利用类型和生态分类系统。第一种类型旨在比较同一生态单元内不同土地利用类型的影响程度,而第二种类型则考虑同一类型的活动在一系列性质和脆弱性不同的生态单元之间引起的影响。在加拿大和全球范围内,选择不考虑任何空间差异的通用模型被证明是不够的,并且不能充分代表跨不同生态单元和一系列土地利用类型的CFs的空间变异性。使用空间模型时,通用模型往往会高估或低估大约25%的结果分布。例如,当考虑到城市土地利用类型时,基于生态区模型获得的地下水补给能力CFs比非空间加拿大模型(半干旱地区)获得的CFs最多小11倍,最大为最大4倍。适用于降雨率高的地区(大西洋海事)。这突出了引入区域化评估的重要性。但是,在某种程度上,更精确的解决方案(例如加拿大生态区或基于Holdridge Life分区的规模)较为合适。一方面,通过确定特殊(提高功能能力而不是减少)和极端情况(CF值非常高和很低),它肯定会带来比粗略范围更大的歧视。另一方面,两个空间分辨率方案之间的范围样本和分布的整体比较并未显示所有影响指标的显着差异。只有化学和机械过滤能力获得的结果明显不同,这可以由特定地点的土壤特性的异质性来解释。在全球范围内,CF的运行和发展是一项重大贡献,因为它们证明了实现可以在国家和大陆范围内生成CF,可以适应几种不同的地理范围。这样的发现可能填补数据库的关键空白问题,该数据库不考虑任何地理空间信息,并提高了所用通用CF的空间顺应性。

著录项

  • 作者

    Saad, Hala Rosie.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Chemical.;Engineering Environmental.
  • 学位 M.Sc.A.
  • 年度 2010
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号