首页> 外文学位 >Data-driven two degree-of-freedom control for robust intelligent life science automation.
【24h】

Data-driven two degree-of-freedom control for robust intelligent life science automation.

机译:数据驱动的两个自由度控制,可实现强大的智能生命科学自动化。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes a novel data-driven two degree-of-freedom control scheme for life science automation. Particular attention is paid to the objective of designing a highly robust and intelligent system to achieve safety and reliability. The two degree-of-freedom structure presents a combination of feedforward and feedback with guaranteed stability. The feedforward controller provides the basal energy to keep the system dynamics in the desired trajectory, while the feedback controller drives the system to the desired trajectory and guarantees the stability. The new approach improves on the inversion-based feedforward design to make finite-time transitions between stationary setpoints. Instead of using time to drive the smooth trajectory linking two terminal points, an intelligent event directly derived from the measurement is used. The integrated intelligent planning technique successfully avoids the large computational burden of real-time trajectory regeneration. Great potential in dealing with measurement noise and unexpected disturbances is demonstrated via applications in life science automation.;We explore two special cases in life science automation: drug delivery and gene delivery. Dynamics modeling on both micro/nanoscale systems are investigated via theoretical analysis and computer simulation. Many challenging nonlinear characteristics of these systems appeal to our interest, including hysteresis, multiple scales, bifurcation and slow response rates. The performance of the proposed data-driven two degree-of-freedom controller is superior to the existing methods in the literature.
机译:本文提出了一种新型的数据驱动的两自由度生命科学自动化控制方案。特别要注意设计高度健壮和智能的系统以实现安全性和可靠性的目标。两自由度结构将前馈和反馈结合在一起,并保证了稳定性。前馈控制器提供基本能量,以将系统动态保持在所需的轨迹上,而反馈控制器将系统驱动到所需的轨迹并保证稳定性。新方法改进了基于反转的前馈设计,可以在固定设定值之间进行有限时间的转换。代替使用时间来驱动连接两个端点的平滑轨迹,而是使用直接从测量得出的智能事件。集成的智能计划技术成功避免了实时轨迹再生的巨大计算负担。通过生命科学自动化中的应用证明了在处理测量噪声和意外干扰方面的巨大潜力。;我们探索了生命科学自动化中的两种特殊情况:药物输送和基因输送。通过理论分析和计算机仿真研究了两种微米/纳米系统的动力学模型。这些系统的许多具有挑战性的非线性特征吸引了我们的兴趣,包括磁滞,多尺度,分叉和响应速度慢。所提出的数据驱动的两自由度控制器的性能优于文献中的现有方法。

著录项

  • 作者

    Yang, Ruoting.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Engineering Biomedical.;Engineering System Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;系统科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号